1
|
Leow LHT, Le HT, Goto A. Dual Temperature- and pH-Responsive Layered Hydrogels Synthesized via Halogen Bond-Based Solid Phase Radical Polymerization. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9960-9970. [PMID: 39900523 DOI: 10.1021/acsami.4c21919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Stimuli-responsive shape-changing layered hydrogels were, for the first time, prepared via solid-phase polymerization, where halogen bond-based solid-phase radical polymerization was utilized. Monomer cocrystals were assembled to form predetermined layered structures before polymerization, and all layers are polymerized at one time. AB bilayer and ABA and ABC trilayer hydrogel sheets that consisted of temperature- and pH-responsive layers were prepared. The obtained layered sheets were responsive to temperature and pH in dual manners at relatively wide ranges of temperature (5-65 °C) and pH (2.0-11.0). The bilayer sheets exhibited bending upon stimuli. The bending angle was tunable, and the bending direction (negative and positive directions) was also switchable in response to temperature and pH. The trilayer sheets exhibited switchable concave, trapezoid, and convex shape changes with modulated angles, which were unprecedented shape changes. Because of the ease of operation and wide monomer scope (using radical polymerization and halogen bonding), the present method offers a facile and versatile approach to fabricate stimuli-responsive shape-changing hydrogel materials.
Collapse
Affiliation(s)
- Lyly Hui Ting Leow
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Hong Tho Le
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Atsushi Goto
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
2
|
Dong X, Wang C, Song H, Shao J, Lan G, Zhang J, Li X, Li M. Advancement in Soft Hydrogel Grippers: Comprehensive Insights into Materials, Fabrication Strategies, Grasping Mechanism, and Applications. Biomimetics (Basel) 2024; 9:585. [PMID: 39451793 PMCID: PMC11505285 DOI: 10.3390/biomimetics9100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Soft hydrogel grippers have attracted considerable attention due to their flexible/elastic bodies, stimuli-responsive grasping and releasing capacity, and novel applications in specific task fields. To create soft hydrogel grippers with robust grasping of various types of objects, high load capability, fast grab response, and long-time service life, researchers delve deeper into hydrogel materials, fabrication strategies, and underlying actuation mechanisms. This article provides a systematic overview of hydrogel materials used in soft grippers, focusing on materials composition, chemical functional groups, and characteristics and the strategies for integrating these responsive hydrogel materials into soft grippers, including one-step polymerization, additive manufacturing, and structural modification are reviewed in detail. Moreover, ongoing research about actuating mechanisms (e.g., thermal/electrical/magnetic/chemical) and grasping applications of soft hydrogel grippers is summarized. Some remaining challenges and future perspectives in soft hydrogel grippers are also provided. This work highlights the recent advances of soft hydrogel grippers, which provides useful insights into the development of the new generation of functional soft hydrogel grippers.
Collapse
Affiliation(s)
- Xiaoxiao Dong
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Chen Wang
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Haoxin Song
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Jinqiang Shao
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Guiyao Lan
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Jiaming Zhang
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Xiangkun Li
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Ming Li
- Center for Advanced Structural Ceramics, Department of Materials, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
3
|
Vo TS, Hoang T, Vo TTBC, Jeon B, Nguyen VH, Kim K. Recent Trends of Bioanalytical Sensors with Smart Health Monitoring Systems: From Materials to Applications. Adv Healthc Mater 2024; 13:e2303923. [PMID: 38573175 PMCID: PMC11468404 DOI: 10.1002/adhm.202303923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/09/2024] [Indexed: 04/05/2024]
Abstract
Smart biosensors attract significant interest due to real-time monitoring of user health status, where bioanalytical electronic devices designed to detect various activities and biomarkers in the human body have potential applications in physical sign monitoring and health care. Bioelectronics can be well integrated by output signals with wireless communication modules for transferring data to portable devices used as smart biosensors in performing real-time diagnosis and analysis. In this review, the scientific keys of biosensing devices and the current trends in the field of smart biosensors, (functional materials, technological approaches, sensing mechanisms, main roles, potential applications and challenges in health monitoring) will be summarized. Recent advances in the design and manufacturing of bioanalytical sensors with smarter capabilities and enhanced reliability indicate a forthcoming expansion of these smart devices from laboratory to clinical analysis. Therefore, a general description of functional materials and technological approaches used in bioelectronics will be presented after the sections of scientific keys to bioanalytical sensors. A careful introduction to the established systems of smart monitoring and prediction analysis using bioelectronics, regarding the integration of machine-learning-based basic algorithms, will be discussed. Afterward, applications and challenges in development using these smart bioelectronics in biological, clinical, and medical diagnostics will also be analyzed. Finally, the review will conclude with outlooks of smart biosensing devices assisted by machine learning algorithms, wireless communications, or smartphone-based systems on current trends and challenges for future works in wearable health monitoring.
Collapse
Affiliation(s)
- Thi Sinh Vo
- School of Mechanical EngineeringSungkyunkwan UniversitySuwon16419South Korea
| | - Trung Hoang
- Department of BiophysicsSungkyunkwan UniversitySuwon16419South Korea
- Institute of Quantum BiophysicsSungkyunkwan UniversitySuwon16419South Korea
| | - Tran Thi Bich Chau Vo
- Faculty of Industrial ManagementCollege of EngineeringCan Tho UniversityCan Tho900000Vietnam
| | - Byounghyun Jeon
- School of Mechanical EngineeringSungkyunkwan UniversitySuwon16419South Korea
| | - Vu Hoang Nguyen
- Department of Mechanical and Aerospace EngineeringMonash UniversityClaytonVIC3800Australia
| | - Kyunghoon Kim
- School of Mechanical EngineeringSungkyunkwan UniversitySuwon16419South Korea
| |
Collapse
|
4
|
Zhang K, Fan Y, Shen S, Yang X, Li T. Tunable Folding Assembly Strategy for Soft Pneumatic Actuators. Soft Robot 2023; 10:1099-1114. [PMID: 37437102 DOI: 10.1089/soro.2022.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023] Open
Abstract
With intrinsic compliance, soft pneumatic actuators are widely utilized in delicate tasks. However, complex fabrication approaches and limited tunability are still problems. Here, we propose a tunable folding assembly strategy to design and fabricate soft pneumatic actuators called FASPAs (folding assembly soft pneumatic actuators). A FASPA consists only of a folded silicone tube constrained by rubber bands. By designing local stiffness and folding manner, the FASPA can be designed to achieve four configurations, pure bending, discontinuous-curvature bending, helix, and discontinuous-curvature helix. Analytical models are developed to predict the deformation and the tip trajectory of different configurations. Meanwhile, experiments are performed to verify the models. The stiffness, load capacity, output force, and step response are measured, and fatigue tests are performed. Further, grippers with single, double, and triple fingers are assembled by utilizing different types of FASPAs. As such, objects with different shapes, sizes, and weights can be easily grasped. The folding assembly strategy is a promising method to design and fabricate soft robots with complex configurations to complete tough tasks in harsh environments.
Collapse
Affiliation(s)
- Kaihang Zhang
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, China
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Yaowei Fan
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, China
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Shiming Shen
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, China
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Xuxu Yang
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, China
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Tiefeng Li
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, China
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Tang W, Zhong Y, Xu H, Qin K, Guo X, Hu Y, Zhu P, Qu Y, Yan D, Li Z, Jiao Z, Fan X, Yang H, Zou J. Self-protection soft fluidic robots with rapid large-area self-healing capabilities. Nat Commun 2023; 14:6430. [PMID: 37833280 PMCID: PMC10576050 DOI: 10.1038/s41467-023-42214-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Soft fluidic robots have attracted a lot of attention and have broad application prospects. However, poor fluidic power source and easy to damage have been hindering their development, while the lack of intelligent self-protection also brings inconvenience to their applications. Here, we design diversified self-protection soft fluidic robots that integrate soft electrohydrodynamic pumps, actuators, healing electrofluids, and E-skins. We develop high-performance soft electrohydrodynamic pumps, enabling high-speed actuation and large deformation of untethered soft fluidic robots. A healing electrofluid that can form a self-healed film with excellent stretchability and strong adhesion is synthesized, which can achieve rapid and large-areas-damage self-healing of soft materials. We propose multi-functional E-skins to endow robots intelligence, making robots realize a series of self-protection behaviors. Moreover, our robots allow their functionality to be enhanced by the combination of electrodes or actuators. This design strategy enables soft fluidic robots to achieve their high-speed actuation and intelligent self-protection, opening a door for soft robots with physical intelligence.
Collapse
Affiliation(s)
- Wei Tang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yiding Zhong
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Huxiu Xu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Kecheng Qin
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinyu Guo
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yu Hu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Pingan Zhu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yang Qu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dong Yan
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhaoyang Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhongdong Jiao
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xujun Fan
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jun Zou
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China.
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
6
|
Jin T, Wang T, Xiong Q, Tian Y, Li L, Zhang Q, Yeow CH. Modular Soft Robot with Origami Skin for Versatile Applications. Soft Robot 2023; 10:785-796. [PMID: 36951665 DOI: 10.1089/soro.2022.0064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
Recent advances in soft robotics demonstrate the requirement of modular actuation to enable the rapid replacement of actuators for maintenance and functionality extension. There remain challenges to designing soft actuators capable of different motions with a consistent appearance for simplifying fabrication and modular connection. Origami structures reshaping along with their unique creases became a powerful tool to provide compact constraint layers for soft pneumatic actuators. Inspired by Waterbomb and Kresling origami, this article presents three types of vacuum-driven soft actuators with a cubic shape and different origami skins, featuring contraction, bending, and twisting-contraction combined motions, respectively. In addition, these modular actuators with diversified motion patterns can be directly fabricated by molding silicone shell and constraint layers together. Actuators with different geometrical parameters are characterized to optimize the structure and maximize output properties after establishing a theoretical model to predict the deformation. Owing to the shape consistency, our actuators can be further modularized to achieve modular actuation via mortise and tenon-based structures, promoting the possibility and efficiency of module connection for versatile tasks. Eventually, several types of modular soft robots are created to achieve fragile object manipulation and locomotion in various environments to show their potential applications.
Collapse
Affiliation(s)
- Tao Jin
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- School of Artificial Intelligence, Shanghai University, Shanghai, China
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- Advanced Robotics Centre, National University of Singapore, Singapore, Singapore
| | - Tianhong Wang
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- School of Artificial Intelligence, Shanghai University, Shanghai, China
| | - Quan Xiong
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- Advanced Robotics Centre, National University of Singapore, Singapore, Singapore
| | - Yingzhong Tian
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Long Li
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- School of Artificial Intelligence, Shanghai University, Shanghai, China
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou, China
| | - Quan Zhang
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- School of Artificial Intelligence, Shanghai University, Shanghai, China
| | - Chen-Hua Yeow
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- Advanced Robotics Centre, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
De Pascali C, Palagi S, Mazzolai B. 3D-printed hierarchical arrangements of actuators mimicking biological muscular architectures. BIOINSPIRATION & BIOMIMETICS 2023; 18:046014. [PMID: 37116509 DOI: 10.1088/1748-3190/acd159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Being able to imitate the sophisticated muscular architectures that characterize the animal kingdom in biomimetic machines would allow them to perform articulated movements with the same naturalness. In soft robotics, multiple actuation technologies have been developed to mimic the contraction of a single natural muscle, but a few of them can be implemented in complex architectures capable of diversifying deformations and forces. In this work, we present three different biomimetic muscle architectures, i.e., fusiform, parallel, and bipennate, which are based on hierarchical arrangements of multiple pneumatic actuators. These biomimetic architectures are monolithic structures composed of thirty-six pneumatic actuators each, directly 3D printed through low-cost printers and commercial materials without any assembly phase. The considerable number of actuators involved enabled the adoption and consequent comparison of two regulation strategies: one based on input modulation, commonly adopted in pneumatic systems, and one based on fiber recruitment, mimicking the regulation behavior of natural muscles. The straightforward realization through additive manufacturing processes of muscle architectures regulated by fiber recruitment strategies facilitates the development of articulated muscular systems for biomimetics machines increasingly similar to the natural ones.
Collapse
Affiliation(s)
- Corrado De Pascali
- Istituto Italiano di Tecnologia, Via Morego 30, Genova, Liguria, 16163, ITALY
| | - Stefano Palagi
- Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, Pontedera, 56025, ITALY
| | - Barbara Mazzolai
- Bioinspired Soft Robotics, Istituto Italiano di Tecnologia, Via Morego 30, Genova, Liguria, 16163, ITALY
| |
Collapse
|
8
|
Li J, Zhang M, Ni G, Mi H, Dong B, Liu C, Shen C. A dynamic supercritical carbon dioxide foaming method for fabricating wrinkled surface to enhance triboelectric nanogenerator performance. J Appl Polym Sci 2022. [DOI: 10.1002/app.53351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jun Li
- National Engineering Research Center for Advanced Polymer Processing Technology Zhengzhou University Zhengzhou China
| | - Miaomiao Zhang
- National Engineering Research Center for Advanced Polymer Processing Technology Zhengzhou University Zhengzhou China
| | - Gaolei Ni
- National Engineering Research Center for Advanced Polymer Processing Technology Zhengzhou University Zhengzhou China
| | - Hao‐Yang Mi
- National Engineering Research Center for Advanced Polymer Processing Technology Zhengzhou University Zhengzhou China
| | - BinBin Dong
- National Engineering Research Center for Advanced Polymer Processing Technology Zhengzhou University Zhengzhou China
| | - Chuntai Liu
- National Engineering Research Center for Advanced Polymer Processing Technology Zhengzhou University Zhengzhou China
| | - Changyu Shen
- National Engineering Research Center for Advanced Polymer Processing Technology Zhengzhou University Zhengzhou China
| |
Collapse
|
9
|
Reconfigurable Self-Sensing Pneumatic Artificial Muscle With Locking Ability Based on Modular Multi-Chamber Soft Actuator. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3189154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Hu Y, Chen C, Zou J. Model-Based Contact Detection and Accommodation for Soft Bending Actuators: An Integrated Direct/Indirect Adaptive Robust Approach. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3179499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yu Hu
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Zhejiang, China
| | - Cong Chen
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Zhejiang, China
| | - Jun Zou
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Zhejiang, China
| |
Collapse
|
11
|
Huang Z, Wei C, Dong L, Wang A, Yao H, Guo Z, Mi S. Fluid-driven Hydrogel Actuators with an Origami Structure. iScience 2022; 25:104674. [PMID: 35856021 PMCID: PMC9287195 DOI: 10.1016/j.isci.2022.104674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/21/2022] [Indexed: 11/09/2022] Open
Abstract
Owing to the innate good biocompatibility, tissue-like softness and other unique properties, hydrogels are of particular interest as promising compliant materials for biomimetic soft actuators. However, the actuation diversity of hydrogel actuators is always restricted by their structure design and fabrication methods. Herein, origami structures were introduced to the design of fluid-driven hydrogel actuators to achieve diverse actuation movements, and a facile fabrication strategy based on removable templates and inside-out diffusion-induced in situ hydrogel crosslinking was adopted. As a result, three types of modular cuboid actuator units (CAUs) achieved linear motion, bending, and twisting. Moreover, combinations of multiple CAUs achieved different actuation modes, including actuation decoupling, superposition, and reprogramming. The diverse actuation functionality would enable new possibilities in application fields for hydrogel soft actuators. Several simple application demos, such as grippers for grasping tasks and a multi-way circuit switch, demonstrated their potential for further applications. Origami structures were introduced to fluid-driven hydrogel actuators Three types of cuboid actuator units (CAUs) achieved linear motion, bending, and twisting A fabrication strategy was based on removable templates and in situ formation Combinations of multiple CAUs achieved different actuation modes
Collapse
|
12
|
Yang J, Wei K, Yu T, Wang S, Yao J. Technology efficiency and promotion mechanism on the response output performance of a biomimetic gelatinous polymer actuator based on different process approaches. J Appl Polym Sci 2022. [DOI: 10.1002/app.52318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Junjie Yang
- School of Mechanical Engineering Northeast Electric Power University Jilin City China
| | - Kang Wei
- School of Mechanical Engineering Northeast Electric Power University Jilin City China
| | - Tao Yu
- School of Mechanical Engineering Northeast Electric Power University Jilin City China
| | - Siyong Wang
- School of Mechanical Engineering Northeast Electric Power University Jilin City China
| | - Jintong Yao
- University Hospital Northeast Electric Power University Jilin City China
| |
Collapse
|
13
|
Modeling-Based EMG Signal (MBES) Classifier for Robotic Remote-Control Purposes. ACTUATORS 2022. [DOI: 10.3390/act11030065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The fast-growing human–robot collaboration predicts that a human operator could command a robot without mechanical interface if effective communication channels are established. In noisy, vibrating and light sensitive environments, some sensors for detecting the human intention could find critical issues to be adopted. On the contrary, biological signals, as electromyographic (EMG) signals, seem to be more effective. In order to command a laboratory collaborative robot powered by McKibben pneumatic muscles, promising actuators for human–robot collaboration due to their inherent compliance and safety features have been researched, a novel modeling-based electromyographic signal (MBES) classifier has been developed. It is based on one EMG sensor, a Myotrac one, an Arduino Uno and a proper code, developed in the Matlab environment, that performs the EMG signal recognition. The classifier can recognize the EMG signals generated by three hand-finger movements, regardless of the amplitude and time duration of the signal and the muscular effort, relying on three mathematical models: exponential, fractional and Gaussian. These mathematical models have been selected so that they are the best fitting with the EMG signal curves. Each of them can be assigned a consent signal for performing the wanted pick-and-place task by the robot. An experimental activity was carried out to test and achieve the best performance of the classifier. The validated classifier was applied for controlling three pressure levels of a McKibben-type pneumatic muscle. Encouraging results suggest that the developed classifier can be a valid command interface for robotic purposes.
Collapse
|
14
|
Jing X, Ma Z, Antwi-Afari MF, Wang L, Li H, Mi HY, Feng PY, Liu Y. Synthesis and Fabrication of Supramolecular Polydimethylsiloxane-Based Nanocomposite Elastomer for Versatile and Intelligent Sensing. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xin Jing
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
| | - Zhenping Ma
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
| | - Maxwell Fordjour Antwi-Afari
- Department of Civil Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, U.K
| | - Lin Wang
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, China
| | - Heng Li
- Department of Building and Real Estate, Hong Kong Polytechnic University, Hong Kong 518000, China
| | - Hao-Yang Mi
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, China
| | - Pei-Yong Feng
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
| | - Yuejun Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
15
|
Design and Optimization Principles of Cylindrical Sliding Triboelectric Nanogenerators. MICROMACHINES 2021; 12:mi12050567. [PMID: 34067748 PMCID: PMC8155992 DOI: 10.3390/mi12050567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 11/29/2022]
Abstract
Reciprocating motion is a widely existing form of mechanical motion in the natural environment. Triboelectric nanogenerators (TENGs) that work in sliding mode are ideal for harnessing large-distance reciprocating motion, and their energy conversion efficiency could be greatly enhanced by adding springs to them. Herein, we focused on investigating the design and optimization principles of sliding mode TENGs by analyzing the effects of spring parameters and vibration frequency on the triboelectric output performance of typical cylindrical sliding TENGs (CS-TENGs). Experimental study and finite elemental analysis were carried out based on a CS-TENG model assembled using a polytetrafluoroethylene (PTFE) film as the negative layer and an aluminum film as the positive layer. The energy output was found to be mainly affected by the change of relative displacement between the two friction layers, rather than the reactive force applied by the springs or the velocity of the sliding motion. However, the frequency of the output signals could be improved when the stiffness coefficient of the springs and the CS-TENG vibration frequency were increased. This study provides valuable directions for the design and optimization of sliding mode TENGs containing springs, and will motivate in-depth research on the fundamental principles of TENG operation.
Collapse
|