1
|
Chamoli A, Karn SK, Kumari M, Sivaramasamy E. Biochar mediated fixation of nitrogen compounds (ammonia and nitrite) in soil: a review. Biodegradation 2025; 36:22. [PMID: 40044937 DOI: 10.1007/s10532-025-10116-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/31/2025] [Indexed: 05/07/2025]
Abstract
Biochar (BC) is a carbon-rich material created from biomass pyrolysis. It is an efficient addition for reducing ammonia inhibition due to its large specific surface area, porosity, conductivity, redox characteristics, and functional groups making it favorable for both soil and water remediation. The efficacy of biochar on the N cycle is associated with biochar properties which are mainly affected by feedstock type and pyrolysis condition. The addition of BC to soil affects nitrogen adsorption pathways. Other advantages include improved soil fertility, nutrient immobilization, and slow-release carbon storage. Biochar adsorption of ammonia reduces ammonia (NH3) and nitrate (NO3) losses during composting after manure applications and provides a method for creating slow-release fertilizers. Depending on the N source and the properties of the biochar, NH3 loss reductions vary. Besides improving soil dynamics, BC can also be used in wastewater treatment. Engineered or designer biochar is positioned as a promising material for wastewater treatment due to its enhanced properties and versatility.
Collapse
Affiliation(s)
- Arti Chamoli
- Department of Biochemistry & Biotechnology, Sardar Bhagwan Singh University, Balawala, Dehradun, 248001, India
| | - Santosh Kumar Karn
- Department of Biochemistry & Biotechnology, Sardar Bhagwan Singh University, Balawala, Dehradun, 248001, India.
| | - Moni Kumari
- Department of Biochemistry & Biotechnology, Sardar Bhagwan Singh University, Balawala, Dehradun, 248001, India
| | - Elayaraja Sivaramasamy
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Institute of Aquaculture and Protection of Waters, Laboratory of Controlled Reproduction and Intensive Aquaculture, Husova třída 458/102, České Budějovice, 37005, Czech Republic
| |
Collapse
|
2
|
Omoboyowa DA. Deciphering phosphodiesterase-5 inhibitors from Aframemum melegueta: computational models against erectile dysfunction. In Silico Pharmacol 2024; 12:101. [PMID: 39524458 PMCID: PMC11549073 DOI: 10.1007/s40203-024-00284-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Insufficient and inability to maintain erection in male for satisfactory sexual performance remains global challenge among couples. The identification of phosphodiesterase-5 (PDE-5) antagonist in the pathogenesis of erectile dysfunction has improved the search for therapeutic agents for the management of this sexual dysfunction. Here in, bioactive compounds from Aframomum melegueta were virtually screened against PDE-5 using Schrodinger suite 2017-1 as computational tool. The lead compound was further validated in comparison with sildenafil by performing 100 ns molecular dynamics (MD) simulation using Desmond. Among 109 bioactive compounds screened, nine (9) molecules were predicted as potent inhibitors of PDE-5 with binding affinities comparable to the co-crystalized ligand (sildenafil). 1,7-bis(3,4-dihyroxy-5-methoxyphenyl)heptane-3,5-diyldiacetate was observed to have the best docking score (-11.522 kcal/mol) among the hit compounds which is very close to the co-crystalized ligand (-11.872 kcal/mol). Validation using pharmacophore hypothesis and QSAR modeling further confirmed the prediction of the hit compounds with fitness score ranging from 0.754 to 2.605 and predicted pIC50 of 3.835 to 7.976 µM. All the hit compounds obeyed Lipinski's rule of five and within the reference range of the pharmacokinetics parameters. The MD simulation result predicted the stability of 1,7-bis(3,4-dihydroxy-5-methoxyphenyl)heptane-3,5-diyldiacetate-PDE-5 complex comparable to the sildenafil-PDE-5 complex. The outcome of this study predicted nine molecules from A. melegueta as potent PDE-5 antagonists which required isolation and experimental validation for the management of erectile dysfunction. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00284-3.
Collapse
Affiliation(s)
- Damilola Alex Omoboyowa
- Phyto-medicine and Computational Biology Lab, Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State Nigeria
| |
Collapse
|
3
|
Omenat-Morán D, Durán-Valle CJ, Martínez-Cañas MA. Kinetic and Mechanistic Analysis of Phenol Adsorption on Activated Carbons from Kenaf. Molecules 2024; 29:4941. [PMID: 39459309 PMCID: PMC11510434 DOI: 10.3390/molecules29204941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/06/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Activated carbons were prepared from kenaf (Hibiscus cannabinus L.). Carbonization was carried out at 600 °C for 2 h, and activation was performed using air at 600 °C and using CO2 at 750 °C. The activated carbons obtained were treated with HNO3 and H2SO4. The samples were characterized by their chemical and physical structure. The activated carbons obtained were mainly macroporous, and their structure underwent major changes with the activation method and acid treatment. Activated carbons were alkaline and acid-treated carbons were neutral. They were used for phenol adsorption and a kinetic and mechanistic study of adsorption was carried out. The fit to the pseudo-second order and Elovich models was predominant. The rate-limiting step of the process was determined to be diffusion within the pores, as the experimental data fit the Bangham model. DFT simulation showed that the preferred adsorption position involves π-π stacking and that oxidation enhances this interaction. Furthermore, the simulation showed that the interaction of phenol with oxygenated functional groups depends on the type of functional group.
Collapse
Affiliation(s)
- Delia Omenat-Morán
- Instituto del Corcho, la Madera y el Carbón Vegetal (CICYTEX), Pol. Ind. El Prado, c/Pamplona s/n, 06800 Mérida, Spain;
| | | | - Manuel A. Martínez-Cañas
- Centre for Scientific Research and Technology in Extremadura, Technological AgriFood Institute, Government of Extremadura, Av. Adolfo Suárez s/n, 06007 Badajoz, Spain;
| |
Collapse
|
4
|
Zhang S, Yao Y, Li J, Wang L, Wang X, Tian S. Multi-factorial investigation of the effect of biochar of the secondary medicinal residue of snow lotus on the adsorption of two azo dyes, methyl red and methyl orange. Microsc Res Tech 2023; 86:1416-1442. [PMID: 37177906 DOI: 10.1002/jemt.24343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Azo dye residues pollute water, which are difficult to decompose, and posing a major threat to the ecological environment. The residues of Chinese medicine still have many possibilities for use after its medicinal value has been brought into play. In this study, secondary residue biochar activation (Na2 CO3 -modified, SBA) and secondary residue biochar (unmodified, SBC) were prepared from the secondary residue of snow lotus at 200-600°C. Surface features were obtained by Brunauer-Emmett-Teller N2 method and combined with scanning electron microscopy, and their structures were analyzed by x-ray diffraction spectroscopy, Fourier infrared and near-infrared spectroscopy. The effects of five factors, including initial concentration, contact time and adsorption temperature and so forth, on the adsorption of methyl red (MR) and methyl orange (MO) solutions were investigated. Results showed that the biochar yield, specific surface area, and pore size increased after modification. modification promoted the formation of the internal structure aromatization and oxygen-containing functional groups. Adsorption experiments showed that the surroundings pH = 8, the dyes adsorption concentration of 8 mg/L, adsorption temperature of 20-40°C and time of about 1 h were more stable. Under the condition, the removal of MO by SBA could reach approximately 60%-80% (480-640 mg/g), while the removal of MR could reach more than 90% (>720 mg/g).The charcoal prepared and modified under high temperature conditions was more effective for MO adsorption, while MR relied on low temperature effectively. This study provides a new choice of adsorbent for MR and MO and finds a new direction for the utilization of snow lotus residues.
Collapse
Affiliation(s)
- Sha Zhang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yanna Yao
- R&D department, Xinjiang Tianshan Lian Pharmaceutical (Co., Ltd.), Changji, Xinjiang, China
| | - Junlong Li
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Linyang Wang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xinyu Wang
- R&D department, Xinjiang Tianshan Lian Pharmaceutical (Co., Ltd.), Changji, Xinjiang, China
| | - Shuge Tian
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
5
|
Snoussi Y, Sifaoui I, El Garah M, Khalil AM, Piñero JE, Jouini M, Ammar S, Lorenzo-Morales J, Chehimi MM. Green, zero-waste pathway to fabricate supported nanocatalysts and anti-kinetoplastid agents from sugarcane bagasse. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 155:179-191. [PMID: 36379167 DOI: 10.1016/j.wasman.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The conversion processes of sugarcane into direct-consumption sugar and juice are generating a tremendous amount of waste, the so-called sugarcane bagasse (SCB). Biochar preparation is among the practical solutions aiming to manage and valorize SCB into high added-value functional material (FM). Herein, we propose a novel zero-waste pathway to fabricate two FMs from one biomass. The SCB was first macerated and ultrasonicated to obtain the natural extract that served as bio-reducing medium. Then, the H2O/EtOH-extracted SCB was in-situ impregnated with a bimetallic solution of copper and silver nitrates. The process produced an intermediate composite (FM0), Ag/Cu-Ag+/Cu2+-loaded SCB which was carbonized to elaborate Ag/Cu-Biochar (FM1), free Ag/Cu nanoparticles (FM2) were obtained by microwaving the residual liquid waste. FM1 exhibited high catalytic activity for the total Fenton-like degradation of methylene blue. The experimental data followed the pseudo-first and the pseudo-second order rate laws with apparent degradation rate constants K1 45 10-3 min-1 and K2 0.115 g.mg-1.min-1, respectively. FM0, FM1 and FM2 were tested as new anti-kinetoplastid materials against two flagellated protozoans namely the Leishmania spp and the Trypanosoma cruzi. Notably, Ag/Cu (FM2) showed exceptional leishmanicidal and trypanocidal effects with IC50 values of 2.909 ± 0.051, 3.580 ± 0.016 and 3.020 ± 0.372 ppm for L.donovani, L. amazonensis and Trypanosoma cruzi, respectively. In this way, we combine green chemistry and agrowaste valorization in a full zero-waste process, to address the 3rd (indicator 3.3.5) and 6th (indicator 6.3.1) United Nations sustainable development goals, ″Good Health and Well-Being″ and ″Clean Water and Sanitation″.
Collapse
Affiliation(s)
- Youssef Snoussi
- Université Paris Cité, CNRS, ITODYS (UMR 7086), Paris 75013, France.
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna, Tenerife 38203, Islas Canarias, Spain; Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de la Laguna (ULL), La Laguna, Tenerife 38203, Islas Canarias, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), 28029 Madrid, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mohamed El Garah
- LASMIS, Antenne de Nogent - 52, Pôle Technologique de Sud - Champagne, 52800 Nogent, France; Nogent International Center for CVD Innovation (NICCI), LRC CEA-LASMIS, Pôle Technologique de Sud Champagne, 52800 Nogent, France
| | - Ahmed M Khalil
- Université Paris Cité, CNRS, ITODYS (UMR 7086), Paris 75013, France; Photochemistry Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna, Tenerife 38203, Islas Canarias, Spain; Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de la Laguna (ULL), La Laguna, Tenerife 38203, Islas Canarias, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), 28029 Madrid, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mohamed Jouini
- Université Paris Cité, CNRS, ITODYS (UMR 7086), Paris 75013, France
| | - Souad Ammar
- Université Paris Cité, CNRS, ITODYS (UMR 7086), Paris 75013, France
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna, Tenerife 38203, Islas Canarias, Spain; Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de la Laguna (ULL), La Laguna, Tenerife 38203, Islas Canarias, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), 28029 Madrid, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | |
Collapse
|
6
|
Boubkr L, Bhakta AK, Snoussi Y, Moreira Da Silva C, Michely L, Jouini M, Ammar S, Chehimi MM. Highly Active Ag-Cu Nanocrystal Catalyst-Coated Brewer’s Spent Grain Biochar for the Mineralization of Methyl Orange and Methylene Blue Dye Mixture. Catalysts 2022; 12:1475. [DOI: 10.3390/catal12111475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
The aim of the present work is to valorise the brewing industry’s waste, i.e., brewer’s spent grain (BSG), into functional biocarbon for environmental catalysis applications. In this context, cost-effective and environmentally friendly biochar support coated with in-situ-generated Ag-Cu nanocrystals, was developed via the wet impregnation of BSG biomass powder with copper (II) nitrate trihydrate and silver nitrate aqueous solution prior to pyrolysis at moderate temperature (500 °C). Small-size homogenously distributed Ag-Cu nanocrystals (≤80 nm) on the surface of the biochar (Biochar@Ag-Cu) were observed by field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). Elemental compositions were determined by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray analysis (EDX). The crystalline nature of the nanoparticles was confirmed by X-ray powder diffraction (XRD). Information about the thermal stability of the materials and quality were obtained by thermogravimetric analysis (TGA) and Raman, respectively. The potentiality of the Biochar@Ag-Cu catalyst in the field of pollutant removal is demonstrated by taking methyl orange and methylene blue as model dyes. A kinetics study was performed and analyzed by UV–vis spectroscopy. Its highly active catalytic nature is proved by the complete mineralization of the methyl orange dye (100%) through oxidative degradation. The reusability of the catalyst has shown 96% removal efficiency after 3 cycles. The linear plot of −Ln (CA/C0) vs. time (R2 = 0.9892) reveals that the mineralization of the methyl orange dye follows pseudo-first-order kinetics (k = 0.603 × 10−2 min−1). A methyl orange + methylene blue dye mixture degradation study has revealed the faster kinetics of the present catalyst towards methylene blue degradation. The current study suggests that BSG Biochar@Ag-Cu can be a potential candidate in contribution towards SDG 6.
Collapse
Affiliation(s)
- Lahcen Boubkr
- Université Paris Cité, CNRS, ITODYS, 75013 Paris, France
| | - Arvind K. Bhakta
- Université Paris Cité, CNRS, ITODYS, 75013 Paris, France
- Department of Chemistry, St. Joseph’s University (Autonomous), Bangalore 560027, India
| | | | | | - Laurent Michely
- Université Paris Est, CNRS, ICMPE (UMR 7182), 94320 Thiais, France
| | - Mohamed Jouini
- Université Paris Cité, CNRS, ITODYS, 75013 Paris, France
| | - Souad Ammar
- Université Paris Cité, CNRS, ITODYS, 75013 Paris, France
| | | |
Collapse
|
7
|
Yusuff AS, Lala MA, Thompson-Yusuff KA, Babatunde EO. ZnCl2-modified eucalyptus bark biochar as adsorbent: preparation, characterization and its application in adsorption of Cr(VI) from aqueous solutions. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
8
|
Dynamic Mechanical Analysis and Ballistic Performance of Kenaf Fiber-Reinforced Epoxy Composites. Polymers (Basel) 2022; 14:polym14173629. [PMID: 36080703 PMCID: PMC9460876 DOI: 10.3390/polym14173629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Several industry sectors have sought to develop materials that combine lightness, strength and cost-effectiveness. Natural lignocellulosic natural fibers have demonstrated to be efficient in replacing synthetic fibers, owing to several advantages such as costs 50% lower than that of synthetic fibers and promising mechanical specific properties. Polymeric matrix composites that use kenaf fibers as reinforcement have shown strength increases of over 600%. This work aims to evaluate the performance of epoxy matrix composites reinforced with kenaf fibers, by means of dynamic-mechanical analysis (DMA) and ballistic test. Through DMA, it was possible to obtain the curves of storage modulus (E′), loss modulus (E″) and damping factor, Tan δ, of the composites. The variation of E′ displayed an increase from 1540 MPa for the plain epoxy to 6550 MPa for the 30 vol.% kenaf fiber composites, which evidences the increase in viscoelastic stiffness of the composite. The increase in kenaf fiber content induced greater internal friction, resulting in superior E″. The Tan δ was considerably reduced with increasing reinforcement fraction, indicating better interfacial adhesion between the fiber and the matrix. Ballistic tests against 0.22 caliber ammunition revealed similar performance in terms of both residual and limit velocities for plain epoxy and 30 vol.% kenaf fiber composites. These results confirm the use of kenaf fiber as a promising reinforcement of polymer composites for automotive parts and encourage its possible application as a ballistic armor component.
Collapse
|
9
|
Citric-Acid-Assisted Preparation of Biochar Loaded with Copper/Nickel Bimetallic Nanoparticles for Dye Degradation. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6020018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immobilization of nanocatalysts on biochar is receiving unprecedented interest among material and catalysis scientists due to its simplicity, versatility, and high efficiency. Herein, we propose a new direct approach to obtain bimetallic copper/nickel nanoparticles loaded on olive stone biochar. The bimetallic-coated biochar and the reference materials, namely bare biochar, copper rich-loaded biochar, and nickel-loaded biochar, were prepared by pyrolysis from olive pit powder particles impregnated first with citric acid (CA) and then with copper and nickel nitrates at 400 °C under nitrogen flow. We employed citric acid in the process in order to examine its effect on the structural and textural properties of biochar supporting the metallic nanoparticles. Surprisingly, citric acid induced the formation of agglomerated or even raspberry-shaped bimetallic copper/nickel nanoparticles. Large 450–500 nm agglomerates of ~80 nm bimetallic CuNi NPs were noted for B-CA@CuNi. Interestingly, for biochar material prepared with initial Cu/Ni = 10 molar ratio (B-CA@CuNi10/1), the bimetallic NPs formed unusual nanoraspberries (174 ± 8 nm in size), which were agglomerates of individual 10–20 nm CuNi10/1 nanoparticles. The B-CA@CuNi and reference materials were characterized by Raman spectroscopy, scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and magnetometry. The B-CA@CuNi and B-CA@Ni materials could be efficiently attracted with a magnet but not B-CA@CuNi10/1 due to the low nickel loading. B-CA@CuNi was tested as a catalyst for the degradation of methyl orange (MO). Discoloration was noted within 10 min, much faster than a similar material prepared in the absence of CA. B-CA@CuNi could be recycled at least 3 times while still exhibiting the same fast catalytic discoloration performance. This paper stresses the important role of citric acid in shaping bimetallic nanoparticles loaded in situ on biochar during the slow pyrolysis process and in enabling faster catalytic discoloration of organic dye solution.
Collapse
|