1
|
Salazar Mercado SA, Zambrano Parada C. Evaluation of morphological and cytotoxic effects of minoxidil on Phaseolus vulgaris L. as a plant model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:226-233. [PMID: 39680283 DOI: 10.1007/s11356-024-35793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
The increasing presence of drugs in the environment has triggered a pollution crisis on a global scale, generating concern about their ecotoxicological effects on ecosystems. In this context, minoxidil, a vasodilator drug widely used in the treatment of androgenic alopecia, has been scarcely investigated in plant systems. Therefore, this study evaluated the morphological and cytotoxic effects of minoxidil on Phaseolus vulgaris L as a bioindicator. P. vulgaris seeds were exposed to different concentrations of minoxidil (0.0, 0.25, 0.5, 1, 1.25, 2.5 and 5 mg/L) and parameters such as germination, root growth, mitotic index and frequency of chromosomal abnormalities were assessed. The results showed a significant inhibition of germination (75-76%) and root growth (52.6-55.3%) at high concentrations of minoxidil (2.55 mg/L-5 mg/L). In addition, a decrease in the mitotic index (8.2) and an increase in the frequency of chromosomal abnormalities (10.2) were observed, suggesting a cytotoxic effect. These findings show that minoxidil, even at low concentrations, can have adverse effects on the morphology and cell division of P. vulgaris. This study demonstrates the potential of plants as tools to evaluate the phytotoxicity and cytotoxicity of drugs and highlights the need to implement measures to reduce the contamination of these drugs in the environment.
Collapse
|
2
|
Rehman SU, Qiao L, Shen T, Hua L, Li H, Ahmad Z, Chen S. Exploring the Frontier of Wheat Rust Resistance: Latest Approaches, Mechanisms, and Novel Insights. PLANTS (BASEL, SWITZERLAND) 2024; 13:2502. [PMID: 39273986 PMCID: PMC11396821 DOI: 10.3390/plants13172502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Wheat rusts, including leaf, stripe, and stem rust, have been a threat to global food security due to their devastating impact on wheat yields. In recent years, significant strides have been made in understanding wheat rusts, focusing on disease spread mechanisms, the discovery of new host resistance genes, and the molecular basis of rust pathogenesis. This review summarizes the latest approaches and studies in wheat rust research that provide a comprehensive understanding of disease mechanisms and new insights into control strategies. Recent advances in genetic resistance using modern genomics techniques, as well as molecular mechanisms of rust pathogenesis and host resistance, are discussed. In addition, innovative management strategies, including the use of fungicides and biological control agents, are reviewed, highlighting their role in combating wheat rust. This review also emphasizes the impact of climate change on rust epidemiology and underscores the importance of developing resistant wheat varieties along with adaptive management practices. Finally, gaps in knowledge are identified and suggestions for future research are made. This review aims to inform researchers, agronomists, and policy makers, and to contribute to the development of more effective and sustainable wheat rust control strategies.
Collapse
Affiliation(s)
- Shams Ur Rehman
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China
| | - Liang Qiao
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China
| | - Tao Shen
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China
| | - Lei Hua
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China
| | - Hongna Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China
| | - Zishan Ahmad
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Shisheng Chen
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China
| |
Collapse
|
3
|
Bakare OO, Gokul A, Fadaka AO, Wu R, Niekerk LA, Barker AM, Keyster M, Klein A. Plant Antimicrobial Peptides (PAMPs): Features, Applications, Production, Expression, and Challenges. Molecules 2022; 27:3703. [PMID: 35744828 PMCID: PMC9229691 DOI: 10.3390/molecules27123703] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
The quest for an extraordinary array of defense strategies is imperative to reduce the challenges of microbial attacks on plants and animals. Plant antimicrobial peptides (PAMPs) are a subset of antimicrobial peptides (AMPs). PAMPs elicit defense against microbial attacks and prevent drug resistance of pathogens given their wide spectrum activity, excellent structural stability, and diverse mechanism of action. This review aimed to identify the applications, features, production, expression, and challenges of PAMPs using its structure-activity relationship. The discovery techniques used to identify these peptides were also explored to provide insight into their significance in genomics, transcriptomics, proteomics, and their expression against disease-causing pathogens. This review creates awareness for PAMPs as potential therapeutic agents in the medical and pharmaceutical fields, such as the sensitive treatment of bacterial and fungal diseases and others and their utilization in preserving crops using available transgenic methods in the agronomical field. PAMPs are also safe to handle and are easy to recycle with the use of proteases to convert them into more potent antimicrobial agents for sustainable development.
Collapse
Affiliation(s)
- Olalekan Olanrewaju Bakare
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.); (A.M.B.); (M.K.)
- Department of Biochemistry, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Sagamu 121001, Ogun State, Nigeria
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthadithjaba 9866, South Africa;
| | - Adewale Oluwaseun Fadaka
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Bio labels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville 7535, South Africa;
| | - Ruomou Wu
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.); (A.M.B.); (M.K.)
| | - Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.); (A.M.B.); (M.K.)
| | - Adele Mariska Barker
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.); (A.M.B.); (M.K.)
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.); (A.M.B.); (M.K.)
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
4
|
Anjago WM, Zeng W, Chen Y, Wang Y, Biregeya J, Li Y, Zhang T, Peng M, Cai Y, Shi M, Wang B, Zhang D, Wang Z, Chen M. The molecular mechanism underlying pathogenicity inhibition by sanguinarine in Magnaporthe oryzae. PEST MANAGEMENT SCIENCE 2021; 77:4669-4679. [PMID: 34116584 DOI: 10.1002/ps.6508] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 05/21/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Sanguinarine (SAN) is a benzophenanthridine alkaloid that broadly targets a range of pathways in mammalian and fungal cells. In this study we set out to explore the molecular mechanism of sanguinarine inhibition of the fungal development and pathogenicity of Magnaporthe oryzae with the hope that sanguinarine will bolster the development of antiblast agents. RESULTS We found that the fungus exhibited a significant reduction in vegetative growth and hyphal melanization while the spores produced long germ tubes on the artificial hydrophobic surface characteristic of a defect in thigmotropic sensing when exposed to 4, 8 and 0.5 μm sanguinarine, respectively. Consistent with these findings, we observed that the genes involved in melanin biosynthesis and the fungal hydrophobin MoMPG1 were remarkably suppressed in mycelia treated with 8 μm sanguinarine. Additionally, sanguinarine inhibited appressorium formation at a dose of 1.0 μm and this defect was restored by supplementing 5 mM of exogenous cAMP. By qRT-PCR assay we found cAMP pathway signalling genes such as MoCAP1 and MoCpkA were significantly repressed whereas MoCDTF1 and MoSOM1 were upregulated in sanguinarine-treated strains. Furthermore, we showed that sanguinarine does not selectively inhibit vegetative growth and appressorium formation of Guy11 but also other strains of M. oryzae. Finally, treatment of sanguinarine impaired the appressorium-mediated penetration and pathogenicity of M. oryzae in a dose-dependent manner. CONCLUSION Based on our results we concluded that sanguinarine is an attractive antimicrobial candidate for fungicide development in the control of rice blast disease. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wilfred Mabeche Anjago
- Ministry of Education Key Laboratory of Biopesticides and Chemical Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Yixiao Chen
- Ministry of Education Key Laboratory of Biopesticides and Chemical Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yupeng Wang
- Ministry of Education Key Laboratory of Biopesticides and Chemical Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jules Biregeya
- Ministry of Education Key Laboratory of Biopesticides and Chemical Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yunxi Li
- Ministry of Education Key Laboratory of Biopesticides and Chemical Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tian Zhang
- Ministry of Education Key Laboratory of Biopesticides and Chemical Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Minghui Peng
- Ministry of Education Key Laboratory of Biopesticides and Chemical Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Cai
- Ministry of Education Key Laboratory of Biopesticides and Chemical Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingyue Shi
- Ministry of Education Key Laboratory of Biopesticides and Chemical Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baohua Wang
- Ministry of Education Key Laboratory of Biopesticides and Chemical Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongmei Zhang
- Ministry of Education Key Laboratory of Biopesticides and Chemical Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zonghua Wang
- Ministry of Education Key Laboratory of Biopesticides and Chemical Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Meilian Chen
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| |
Collapse
|
5
|
Javed S, Javaid A, Hanif U, Bahadur S, Sultana S, Shuaib M, Ali S. Effect of necrotrophic fungus and PGPR on the comparative histochemistry of Vigna radiata by using multiple microscopic techniques. Microsc Res Tech 2021; 84:2737-2748. [PMID: 34028133 DOI: 10.1002/jemt.23836] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/20/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022]
Abstract
Rapid advances in the field of pathogen detection have opened new opportunities and better understanding for their management approaches. Aim of this study was to elucidate histopathological observations of different tissues affected by Macrophomina phaseolina and to observe the defense responses of plant growth promoting rhizobacteria (PGPR) in mungbean plants. Sections of the stem and root were prepared and stained with ferric chloride, Lugol's iodine and Wiesner's reagent and were then observed under multiple microscopic techniques. Results revealed that both pathogen and PGPR produce responses on the plant that include colonization of xylem vessels by hyphae and sclerotia, hypertrophy and hyperplasia of the cells, destruction of xylem fibers and amyloplasts in parenchymatous cells; and production of gels by the plant were observed. There was a significant increase in lignin and phenolic compounds deposition in stem and root sections of PGPR treated and non-treated mungbean plants. Whereas the soil amended with PGPR showed very less to no starch production. Moreover, production of gels and gums were also observed in both stem and root sections. Compared to light microscopy, scanning electron microscope provided greater depth of focus and resolution of the pathogen attack on plant tissues, associated bacteria. As a whole, the data demonstrated that inoculation of PGPR can be an effective strategy to stimulate plant growth and they could significantly activate disease resistance against M. phaseolina.
Collapse
Affiliation(s)
- Sidra Javed
- Institute of Agriculture Sciences, University of the Punjab, Lahore, Pakistan
| | - Arshad Javaid
- Department of Botany, Government College University, Lahore, Pakistan
| | - Uzma Hanif
- Department of Botany, Government College University, Lahore, Pakistan
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou, China
| | - Shazia Sultana
- Department of Plant Sciences, Quaid-I-Azam University Islamabad, Pakistan
| | - Muhammad Shuaib
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Sajjad Ali
- Department of Botany, Bacha Khan University, Charsadda, Pakistan
| |
Collapse
|