1
|
Kaur J, Pandove G, Kumar V, Sabour AAA, Alshiekheid M. Development, Shelf Stability, and In-Vitro Evaluation of Liquid Bacterial Inoculant Acinetobacter lwoffii Strain PAU_31LN. J Basic Microbiol 2025; 65:e2400617. [PMID: 39828984 DOI: 10.1002/jobm.202400617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/01/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025]
Abstract
Acinetobacter has been recognized as a versatile plant growth promoting (PGP) rhizobacteria (PGPR) that produce multiple PGP traits. The present study was conducted to formulate an efficient and stable liquid bacterial inoculant (LBI) of Acinetobacter lwoffii strain PAU_31LN. In the current investigation, total 16 endophytic bacteria were isolated from cotton leaves and evaluated for plant growth-promoting features such as production of phytohormones, mineral solubilization, siderophore production, hydrogen cyanide (HCN) production, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. The leaf endophytic bacteria designated as 31LN was found promising for all the PGP traits and it was identified as A. lwoffii strain PAU_31LN by 16S rRNA gene sequencing. For the development of LBI of A. lwoffii strain PAU_31LN, 4.5 g/L yeast extract, 5 g/L NaCl, 5 g/L peptone, and 12.5 mM food-grade trehalose was optimized as appropriate medium composition using response surface methodology (RSM) and Box-Behnken design. Further, the viability of A. lwoffii strain PAU_31LN in the optimized formulation was observed as 1.1 folds higher over the control after 180 days of storage at room temperature. Moreover, nonsignificant variation was recorded in the functional traits of 180 days old LBI of A. lwoffii strain PAU_31LN and freshly prepared LBI. The in-vitro plant growth parameters such as length and seed vigor index of 7-day-old cotton seedlings were enhanced by the seed bio-priming with LBI of A. lwoffii strain PAU_31LN over the control. The results of the present study signify the importance of endophytes and statistical methods to formulate prominent LBI.
Collapse
Affiliation(s)
- Jagjot Kaur
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Gulab Pandove
- School of Organic Farming, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Vineet Kumar
- Regional Research Station, Bathinda, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Amal Abdullah A Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maha Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Liu W, Xiao X, Li L, Shen X, Cao Y, Gao C, Zhao Y. Biochar-based metal tolerating plant growth promoting bacterial inoculants enhanced the ability of ryegrass for phytostabilization. ENVIRONMENTAL RESEARCH 2025; 265:120389. [PMID: 39577731 DOI: 10.1016/j.envres.2024.120389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Metal-tolerant microbes with plant growth-promoting traits represent a promising biological amendment for enhancing the phytostabilization of contaminated soils. However, the relationship between phytostabilization efficiency and microbial consortium composition and diversity remains unclear. This study selected three cadmium (Cd) resistant plant growth promoting bacteria (PGPB) from Bacillus, Pseudomonas, and Rhodopseudomonas were selected as candidates for biochar-based microbial inoculants. In our pot experiment with single, dual, and triple inoculations, a more diverse microbial consortium significantly increased root Cd accumulation and aboveground biomass. Triple inoculation boosted root Cd accumulation by 56.4 %-121.5 % and belowground biomass by 4.8 %-46.2 %, compared to dual and single inoculations. However, this trend was not observed in the aboveground parts of the plants, resulting in a decrease in the translocation factor of Cd in ryegrass. Microbial inoculation altered the structure of the rhizosphere bacterial community, especially the triple microbial inoculation treatment, which showed significant differences compared to the other treatment groups. However, there were no significant changes in alpha diversity. Increased soil pH and its positive interaction with soil enzymes significantly contributed to the phytostabilization efficiency of biochar-based microbial inoculation, whereas the contribution of rhizosphere bacterial communities was much less significant. In summary, metal-tolerant PGPB inoculation can promote phytostabilization efficiency and enhance metal immobilization in soil, reducing their threat to organisms and the environment.
Collapse
Affiliation(s)
- Wenjing Liu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Xian Xiao
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China.
| | - Liangzhong Li
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510630, China.
| | - Xiaoxia Shen
- Jiangsu Longhuan Environmental Technology Co., LTD, Changzhou, 213164, China
| | - Yue Cao
- Jiangsu Longhuan Environmental Technology Co., LTD, Changzhou, 213164, China
| | - Chenxin Gao
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Yuan Zhao
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
3
|
Montero-Palmero B, Lucas JA, Montalbán B, García-Villaraco A, Gutierrez-Mañero J, Ramos-Solano B. Iron Deficiency in Tomatoes Reversed by Pseudomonas Strains: A Synergistic Role of Siderophores and Plant Gene Activation. PLANTS (BASEL, SWITZERLAND) 2024; 13:3585. [PMID: 39771283 PMCID: PMC11677312 DOI: 10.3390/plants13243585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
An alkaline pH in soils reduces Fe availability, limiting Fe uptake, compromising plant growth, and showing chlorosis due to a decrease in chlorophyll content. To achieve proper Fe homeostasis, dicotyledonous plants activate a battery of strategies involving not only Fe absorption mechanisms, but also releasing phyto-siderophores and recruiting siderophore-producing bacterial strains. A screening for siderophore-producing bacterial isolates from the rhizosphere of Pinus pinea was carried out, resulting in two Pseudomonas strains, Z8.8 and Z10.4, with an outstanding in vitro potential to solubilize Fe, Mn, and Co. The delivery of each strain to 4-week-old iron-starved tomatoes reverted chlorosis, consistent with enhanced Fe contents up to 40%. Photosynthesis performance was improved, revealing different strategies. While Z8.8 increased energy absorption together with enhanced chlorophyll "a" content, followed by enhanced energy dissipation, Z10.4 lowered pigment contents, indicating a better use of absorbed energy, leading to a better survival rate. The systemic reprogramming induced by both strains reveals a lower expression of Fe uptake-related genes, suggesting that both strains have activated plant metabolism to accelerate Fe absorption faster than controls, consistent with increased Fe content in leaves (47% by Z8.8 and 42% by Z10.4), with the difference probably due to the ability of Z8.8 to produce auxins affecting root structure. In view of these results, both strains are effective candidates to develop biofertilizers.
Collapse
Affiliation(s)
| | | | | | | | | | - Beatriz Ramos-Solano
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, San Pablo—CEU Universities, 28668 Boadilla del Monte, Spain; (B.M.-P.)
| |
Collapse
|
4
|
Raklami A, Slimani A, Oufdou K, Jemo M, Bechtaoui N, Imziln B, Meddich A, Navarro-Torre S, Rodríguez-Llorente ID, Pajuelo E. The potential of plant growth-promoting bacteria isolated from arid heavy metal contaminated environments in alleviating salt and water stresses in alfalfa. Lett Appl Microbiol 2024; 77:ovae075. [PMID: 39191534 DOI: 10.1093/lambio/ovae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/17/2024] [Accepted: 08/26/2024] [Indexed: 08/29/2024]
Abstract
Co-evolution of plant beneficial microbes in contaminated environments enhances plant growth and mitigates abiotic stress. However, few studies on heavy metal (HM) tolerant plant growth-promoting bacteria (PGPB) promoting crop growth in Morocco's farming areas affected by drought and salinity are available. Plant associated bacteria tolerant to HM and able to produce indole acetic acid and siderophores, display ACC-deaminase activity and solubilize phosphate, were isolated from long-term metal exposed environments. Tolerance to HM and biofilms formation in the absence or presence of HM were assessed. A consortium including two Ensifer meliloti strains (RhOL6 and RhOL8), one Pseudomonas sp. strain (DSP17), and one Proteus sp. strain (DSP1), was used to inoculate alfalfa (Medicago sativa) seedlings under various conditions, namely, salt stress (85 mM) and water stress (30% water holding capacity). Shoot and root dry weights of alfalfa were measured 60 days after sowing. In the presence of HM, DSP17 showed the greatest auxin production, whereas RhOL8 had the highest ACC-deaminase activity and DSP17 formed the densest biofilm. Root dry weight increased 138% and 195% in salt and water stressed plants, respectively, regarding non-inoculated controls. Our results confirm the improvement of alfalfa growth and mitigation of salt and drought stress upon inoculation.
Collapse
Affiliation(s)
- Anas Raklami
- AgroBiosciences Program, College for Sustainable Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, Benguerir 43150, Morocco
| | - Aiman Slimani
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment (BioMagE), Labeled Research Unit-CNRST No. 4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 2390, Morocco
- Laboratory of Agro-Food, Biotechnologies, and Valorization of Plant Bioresources (Agrobioval), Center of Agrobiotechnology and Bioengineering, Research Unit labeled CNRST (Centre AgroBiotech-URL-CNRST-05), "Physiology of Abiotic Stresses" Team, Cadi Ayyad University, Marrakesh 2390, Morocco
| | - Khalid Oufdou
- AgroBiosciences Program, College for Sustainable Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, Benguerir 43150, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment (BioMagE), Labeled Research Unit-CNRST No. 4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 2390, Morocco
| | - Martin Jemo
- AgroBiosciences Program, College for Sustainable Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, Benguerir 43150, Morocco
| | - Noura Bechtaoui
- Department of Biology, Nador Multidisciplinary Faculty, Mohamed First University, University Mohammed Premier, Mohammed VI BV, PB 524, Oujda 60000, Morocco
| | - Boujamaa Imziln
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment (BioMagE), Labeled Research Unit-CNRST No. 4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 2390, Morocco
| | - Abdelilah Meddich
- Laboratory of Agro-Food, Biotechnologies, and Valorization of Plant Bioresources (Agrobioval), Center of Agrobiotechnology and Bioengineering, Research Unit labeled CNRST (Centre AgroBiotech-URL-CNRST-05), "Physiology of Abiotic Stresses" Team, Cadi Ayyad University, Marrakesh 2390, Morocco
| | - Salvadora Navarro-Torre
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, C/ Profesor García González, 2, Seville 41012, Spain
| | - Ignacio D Rodríguez-Llorente
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, C/ Profesor García González, 2, Seville 41012, Spain
| | - Eloísa Pajuelo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, C/ Profesor García González, 2, Seville 41012, Spain
| |
Collapse
|
5
|
Chowardhara B, Saha B, Awasthi JP, Deori BB, Nath R, Roy S, Sarkar S, Santra SC, Hossain A, Moulick D. An assessment of nanotechnology-based interventions for cleaning up toxic heavy metal/metalloid-contaminated agroecosystems: Potentials and issues. CHEMOSPHERE 2024; 359:142178. [PMID: 38704049 DOI: 10.1016/j.chemosphere.2024.142178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/22/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Heavy metals (HMs) are among the most dangerous environmental variables for a variety of life forms, including crops. Accumulation of HMs in consumables and their subsequent transmission to the food web are serious concerns for scientific communities and policy makers. The function of essential plant cellular macromolecules is substantially hampered by HMs, which eventually have a detrimental effect on agricultural yield. Among these HMs, three were considered, i.e., arsenic, cadmium, and chromium, in this review, from agro-ecosystem perspective. Compared with conventional plant growth regulators, the use of nanoparticles (NPs) is a relatively recent, successful, and promising method among the many methods employed to address or alleviate the toxicity of HMs. The ability of NPs to reduce HM mobility in soil, reduce HM availability, enhance the ability of the apoplastic barrier to prevent HM translocation inside the plant, strengthen the plant's antioxidant system by significantly enhancing the activities of many enzymatic and nonenzymatic antioxidants, and increase the generation of specialized metabolites together support the effectiveness of NPs as stress relievers. In this review article, to assess the efficacy of various NP types in ameliorating HM toxicity in plants, we adopted a 'fusion approach', in which a machine learning-based analysis was used to systematically highlight current research trends based on which an extensive literature survey is planned. A holistic assessment of HMs and NMs was subsequently carried out to highlight the future course of action(s).
Collapse
Affiliation(s)
- Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh-792103, India.
| | - Bedabrata Saha
- Plant Pathology and Weed Research Department, Newe Ya'ar Research Centre, Agricultural Research Organization, Ramat Yishay-3009500, Israel.
| | - Jay Prakash Awasthi
- Department of Botany, Government College Lamta, Balaghat, Madhya Pradesh 481551, India.
| | - Biswajit Bikom Deori
- Department of Environmental Science, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India.
| | - Ratul Nath
- Department of Life-Science, Dibrugarh University, Dibrugarh, Assam-786004, India.
| | - Swarnendu Roy
- Department of Botany, University of North Bengal, P.O.- NBU, Dist- Darjeeling, West Bengal, 734013, India.
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| |
Collapse
|
6
|
Gomes AF, Sousa E, Resende DISP. A Practical Toolkit for the Detection, Isolation, Quantification, and Characterization of Siderophores and Metallophores in Microorganisms. ACS OMEGA 2024; 9:26863-26877. [PMID: 38947835 PMCID: PMC11209696 DOI: 10.1021/acsomega.4c03042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024]
Abstract
Siderophores are well-recognized low-molecular-weight compounds produced by numerous microorganisms to acquire iron from the surrounding environments. These secondary metabolites can form complexes with other metals besides iron, forming soluble metallophores; because of that, they are widely investigated in either the medicinal or environmental field. One of the bottlenecks of siderophore research is related to the identification of new siderophores from microbial sources. Herein we have compiled a comprehensive range of standard and updated methodologies that have been developed over the past few years to provide a comprehensive toolbox in this area to current researchers.
Collapse
Affiliation(s)
- Ana F.
R. Gomes
- LQOF
- Laboratório de Química Orgânica e Farmacêutica,
Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR-
Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Emília Sousa
- LQOF
- Laboratório de Química Orgânica e Farmacêutica,
Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR-
Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Diana I. S. P. Resende
- LQOF
- Laboratório de Química Orgânica e Farmacêutica,
Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR-
Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
- ICBAS
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
7
|
Sagar A, Rai S, Sharma S, Perveen K, Bukhari NA, Sayyed RZ, Mastinu A. Molecular Characterization Reveals Biodiversity and Biopotential of Rhizobacterial Isolates of Bacillus Spp. MICROBIAL ECOLOGY 2024; 87:83. [PMID: 38888737 PMCID: PMC11189325 DOI: 10.1007/s00248-024-02397-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Bacillus species appearas the most attractive plant growth-promoting rhizobacteria (PGPR) and alternative to synthetic chemical pesticides. The present study examined the antagonistic potential of spore forming-Bacilli isolated from organic farm soil samples of Allahabad, India. Eighty-seven Bacillus strains were isolated and characterized based on their morphological, plant growth promoting traits and molecular characteristics. The diversity analysis used 16S-rDNA, BOX-element, and enterobacterial repetitive intergenic consensus. Two strains, PR30 and PR32, later identified as Bacillus sp., exhibited potent in vitro antagonistic activity against Ralstonia solanaceorum. These isolates produced copious amounts of multiple PGP traits, such as indole-3-acetic acid (40.0 and 54.5 μg/mL), phosphate solubilization index (PSI) (4.4 and 5.3), ammonia, siderophore (3 and 4 cm), and 1-aminocyclopropane-1-carboxylate deaminase (8.1and 9.2 μM/mg//h) and hydrogen cyanide. These isolates were subjected to the antibiotic sensitivity test. The two potent isolates based on the higher antagonistic and the best plant growth-promoting ability were selected for plant growth-promoting response studies in tomatoe, broccoli, and chickpea. In the pot study, Bacillus subtilis (PR30 and PR31) showed significant improvement in seed germination (27-34%), root length (20-50%), shoot length (20-40%), vigor index (50-75%), carotenoid content (0.543-1.733), and lycopene content (2.333-2.646 mg/100 g) in tomato, broccoli, and chickpea. The present study demonstrated the production of multiple plant growth-promoting traits by the isolates and their potential as effective bioinoculants for plant growth promotion and biocontrol of phytopathogens.
Collapse
Affiliation(s)
- Alka Sagar
- Department of Microbiology and Biotechnology, Meerut Institute of Engineering and Technology, Meerut, India.
- Department of Industrial Microbiology, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India.
| | - Shalini Rai
- Department of Industrial Microbiology, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India
- Department of Biotechnology, SHEPA, Varanasi, India
| | - Sonia Sharma
- Department of Microbiology and Biotechnology, Meerut Institute of Engineering and Technology, Meerut, India
| | - Kahkashan Perveen
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box-22452, 11495, Riyadh, Saudi Arabia
| | - Najat A Bukhari
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box-22452, 11495, Riyadh, Saudi Arabia
| | - R Z Sayyed
- Department of Microbiology, PSGVP Mandal's S. I. Patil Arts, G B Patel Science and STKV Sangh Commerce College, Shahada, 425409, India.
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia.
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123, Brescia, Italy.
| |
Collapse
|
8
|
Majewska M, Słomka A, Hanaka A. Siderophore-producing bacteria from Spitsbergen soils-novel agents assisted in bioremediation of the metal-polluted soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32371-32381. [PMID: 38652189 PMCID: PMC11133149 DOI: 10.1007/s11356-024-33356-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Siderophores are molecules that exhibit a high specificity for iron (Fe), and their synthesis is induced by a deficiency of bioavailable Fe. Complexes of Fe-siderophore are formed extracellularly and diffuse through porins across membranes into bacterial cells. Siderophores can bind heavy metals facilitating their influx into cells via the same mechanism. The aim of the studies was to determine the ability of siderophore-producing bacteria isolated from soils in the north-west part of Wedel Jarlsberg Land (Spitsbergen) to chelate non-Fe metals (Al, Cd, Co, Cu, Hg, Mn, Sn, and Zn). Specially modified blue agar plates were used, where Fe was substituted by Al, Cd, Co, Cu, Hg, Mn, Sn, or Zn in metal-chrome azurol S (CAS) complex, which retained the blue color. It has been proven that 31 out of 33 strains were capable of producing siderophores that bind to Fe, as well as other metals. Siderophores from Pantoea sp. 24 bound only Fe and Zn, and O. anthropi 55 did not produce any siderophores in pure culture. The average efficiency of Cd, Co, Cu, Mn, Sn, and Zn chelation was either comparable or higher than that of Fe, while Al and Hg showed significantly lower efficiency. Siderophores produced by S. maltophilia 54, P. luteola 27, P. luteola 46, and P. putida 49 exhibited the highest non-Fe metal chelation activity. It can be concluded that the siderophores of these bacteria may constitute an integral part of the metal bioleaching preparation, and this fact will be the subject of further research.
Collapse
Affiliation(s)
- Małgorzata Majewska
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-031, Lublin, Poland.
| | - Anna Słomka
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-031, Lublin, Poland
| | - Agnieszka Hanaka
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-031, Lublin, Poland
| |
Collapse
|
9
|
Nithyapriya S, Sundaram L, Eswaran SUD, Perveen K, Alshaikh NA, Sayyed RZ, Mastinu A. Purification and Characterization of Desferrioxamine B of Pseudomonas fluorescens and Its Application to Improve Oil Content, Nutrient Uptake, and Plant Growth in Peanuts. MICROBIAL ECOLOGY 2024; 87:60. [PMID: 38630182 PMCID: PMC11024037 DOI: 10.1007/s00248-024-02377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/06/2024] [Indexed: 04/19/2024]
Abstract
Microorganisms produce siderophores, which are low-molecular-weight iron chelators when iron availability is limited. The present analyzed the role of LNPF1 as multifarious PGPR for improving growth parameters and nutrient content in peanut and soil nutrients. Such multifarious PGPR strains can be used as effective bioinoculants for peanut farming. In this work, rhizosphere bacteria from Zea mays and Arachis hypogaea plants in the Salem area of Tamil Nadu, India, were isolated and tested for biochemical attributes and characteristics that stimulate plant growth, such as the production of hydrogen cyanide, ammonia (6 µg/mL), indole acetic acid (76.35 µg/mL), and solubilizing phosphate (520 µg/mL). The 16S rRNA gene sequences identified the isolate LNPF1 as Pseudomonas fluorescens with a similarity percentage of 99% with Pseudomonas sp. Isolate LNPF1 was evaluated for the production of siderophore. Siderophore-rich supernatant using a Sep Pack C18 column and Amberlite-400 Resin Column (λmax 264) produced 298 mg/L and 50 mg/L of siderophore, respectively. The characterization of purified siderophore by TLC, HPLC, FTIR, and 2D-NMR analysis identified the compound as desferrioxamine, a hydroxamate siderophore. A pot culture experiment determined the potential of LNPF1 to improve iron and oil content and photosynthetic pigments in Arachis hypogaea L. and improve soil nutrient content. Inoculation of A. hypogea seeds with LNPF1 improved plant growth parameters such as leaf length (60%), shoot length (22%), root length (54.68%), fresh weight (47.28%), dry weight (37%), and number of nuts (66.66) compared to the control (untreated seeds). This inoculation also improved leaf iron content (43.42), short iron content (38.38%), seed iron (46.72%), seed oil (31.68%), carotenoid (64.40%), and total chlorophyll content (98.%) compared to control (untreated seeds). Bacterized seeds showed a substantial increase in nodulation (61.65%) and weight of individual nodules (95.97) vis-à-vis control. The results of the present study indicated that P. fluorescens might be utilized as a potential bioinoculant to improve growth, iron content, oil content, number of nuts and nodules of Arachishypogaea L., and enrich soil nutrients.
Collapse
Affiliation(s)
- S Nithyapriya
- PG and Research Department of Botany, Padmavani Arts and Science College for Women, Salem, 636011, India
| | | | | | - Kahkashan Perveen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, 11451, Riyadh, Saudi Arabia
| | - Najla A Alshaikh
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, 11451, Riyadh, Saudi Arabia
| | - R Z Sayyed
- Department of Microbiology, PSGVP Mandal's S I Patil Arts, G B Patel Science and STKV Sangh Commerce College, Shahada, 425409, India.
- Faculty of Health and Life Sciences, INTI International University, Negeri Sembilan, Persiaran Perdana BBN, Putra Nilai, 71800, Nilai, Malaysia.
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123, Brescia, Italy.
| |
Collapse
|
10
|
Sarvepalli M, Velidandi A, Korrapati N. Optimization of Siderophore Production in Three Marine Bacterial Isolates along with Their Heavy-Metal Chelation and Seed Germination Potential Determination. Microorganisms 2023; 11:2873. [PMID: 38138017 PMCID: PMC10746010 DOI: 10.3390/microorganisms11122873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023] Open
Abstract
Siderophores are low-molecular-weight and high-affinity molecules produced by bacteria under iron-limited conditions. Due to the low iron (III) (Fe+3) levels in surface waters in the marine environment, microbes produce a variety of siderophores. In the current study, halophilic bacteria Bacillus taeanensis SMI_1, Enterobacter sp., AABM_9, and Pseudomonas mendocina AMPPS_5 were isolated from marine surface water of Kalinga beach, Bay of Bengal (Visakhapatnam, Andhra Pradesh, India) and were investigated for siderophore production using the Chrome Azurol S (CAS) assay. The effect of various production parameters was also studied. The optimum production of siderophores for SMI_1 was 93.57% siderophore units (SU) (after 48 h of incubation at 30 °C, pH 8, sucrose as carbon source, sodium nitrate as nitrogen source, 0.4% succinic acid), and for AABM_9, it was 87.18 %SU (after 36 h of incubation period at 30 °C, pH 8, in the presence of sucrose, ammonium sulfate, 0.4% succinic acid). The maximum production of siderophores for AMPPS_5 was 91.17 %SU (after 36 h of incubation at 35 °C, pH 8.5, glucose, ammonium sulfate, 0.4% citric acid). The bacterial isolates SMI_1, AABM_9, and AMPPS_5 showed siderophore production at low Fe+3 concentrations of 0.10 µM, 0.01 µM, and 0.01 µM, respectively. The SMI_1 (73.09 %SU) and AMPPS_5 (68.26 %SU) isolates showed siderophore production in the presence of Zn+2 (10 µM), whereas AABM_9 (50.4 %SU) exhibited siderophore production in the presence of Cu+2 (10 µM). Additionally, these bacterial isolates showed better heavy-metal chelation ability and rapid development in seed germination experiments. Based on these results, the isolates of marine-derived bacteria effectively produced the maximum amount of siderophores, which could be employed in a variety of industrial and environmental applications.
Collapse
Affiliation(s)
| | | | - Narasimhulu Korrapati
- Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India; (M.S.); (A.V.)
| |
Collapse
|
11
|
Guan W, Fang Z, Chen Y, Li Y, Peng Z, Sun L, Deng Q, Gooneratne R. Cadmium-chelating ability of the siderophore DHBS secreted by Leclercia adecarboxylata FCH-CR2 and its action mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165850. [PMID: 37516178 DOI: 10.1016/j.scitotenv.2023.165850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/15/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
As one of the most accumulative toxic heavy metals, cadmium (Cd) poses a major threat to human health. Bacterial siderophores, as small molecules with metal-absorbing ability, have great potential activity for Cd-reduction. In this study, the siderophore-producing bacterialstrain FCH-CR2 was isolated from a high-Cd contaminated soil using the CAS method. Leclercia adecarboxylata was identified through 16S rRNA sequence, homology analysis, colony morphology, physiological and biochemical tests. A siderophore, catechol type 2,3-dihydroxy-N-benzoyl-l-serine (DHBS) secreted by FCH-CR2, was purified using RP-HPLC and identified by LC-MS/MS. Intraperitoneal injection of DHBS significantly increased fecal Cd levels, and reduced Cd accumulation in organs. In density flooding theory (DFT) analysis, DHBS may bind to Cd via the hydroxyl site on the benzene ring. Besides, the isothermal titration calorimetry (ITC) assay revealed that the formation of Cd-DHBS is a spontaneous and endothermic reaction with ΔG = -21.4 kJ/mol and ΔH = 1.51 ± 0.142 kJ/mol.
Collapse
Affiliation(s)
- Wenhao Guan
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhijia Fang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Yinyan Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongbin Li
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhilan Peng
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qi Deng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, Canterbury 7647, New Zealand
| |
Collapse
|
12
|
Skeba S, Snyder M, Maltman C. Metallophore Activity toward the Rare Earth Elements by Bacteria Isolated from Acid Mine Drainage Due to Coal Mining. Microorganisms 2023; 11:2672. [PMID: 38004684 PMCID: PMC10673398 DOI: 10.3390/microorganisms11112672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
The field of microbe-metal interactions has been gaining significant attention. While the direct impact of metal oxyanions on bacteria has been investigated, significantly less attention has been placed on the ability of certain microbes to 'collect' such metal ions via secreted proteins. Many bacteria possess low-weight molecules called siderophores, which collect Fe from the environment to be brought back to the cell. However, some appear to have additional roles, including binding other metals, termed 'metallophores'. Microbes can remove/sequester these from their surroundings, but the breadth of those that can be removed is still unknown. Using the Chromeazurol S assay, we identified eight isolates, most belonging to the genus Pseudomonas, possessing siderophore activity, mainly from sites impacted by coal mine drainage, also possessing a metallophore activity toward the rare earth elements that does not appear to be related to ionic radii or previously reported EC50 concentrations for E. coli. We found the strength of metallophore activity towards these elements was as follows: Pr > Sc > Eu > Tm > Tb > Er > Yb > Ce > Lu > Sm > Ho > La > Nd > Dy > Gd > Y. This is the first study to investigate such activity and indicates bacteria may provide a means of removal/recovery of these critical elements.
Collapse
Affiliation(s)
| | | | - Chris Maltman
- Department of Biology, Slippery Rock University, Slippery Rock, PA 16057, USA
| |
Collapse
|
13
|
Medison RG, Jiang J, Medison MB, Tan LT, Kayange CD, Sun Z, Zhou Y. Evaluating the potential of Bacillus licheniformis YZCUO202005 isolated from lichens in maize growth promotion and biocontrol. Heliyon 2023; 9:e20204. [PMID: 37767471 PMCID: PMC10520788 DOI: 10.1016/j.heliyon.2023.e20204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Lichens exist in an organismal organization of mycobiont, photobiont, and non-photoautotrophic bacteria. These organisms contribute to the growth of lichens even in poor nutrition substrates. However, studies on the isolation and application of non-photoautotrophic bacteria in plant growth and biocontrol are scanty. Therefore, a study was conducted to isolate and evaluate the potential of non-photoautotrophic bacteria from lichen tissues in maize plant growth promotion and biocontrol of plant pathogens (fungi and bacteria). Five bacterial strains were isolated and tested for their ability to produce indole-3-Acetic Acid (IAA). One bacterium named YZCUO202005 produced IAA, siderophores and biofilms, solubilized phosphate and potassium and exhibited extracellular enzymes (cellulases, proteases, amylase, and β -1,3-Glucanase). Based on the 16S rRNA sequence analysis results, YZCUO202005 was identified as Bacillus licheniformis. The strain inhibited the growth of five pathogenic fungi with an inhibition percent of between 58.7% and 71.7% and two pathogenic bacteria. Under greenhouse conditions, YZCUO202005 was tested for its abilities to enhance maize seed germination, and vegetative growth. Compared with the control treatment, the strain significantly enhanced the growth of stem length (i.e. 18 ± 0.64 cm, 78 ± 0.92 cm), leaf length (i.e. 10 ± 0.36 cm, 57 ± 1.42 cm), leaf chlorophyll levels (i.e., 13 ± 0.40, 40 ± 0.43 SPAD), and root length (i.e, 9.8 ± 2.25 cm, 22.5 ± 6.59 cm). Our results demonstrated that B. licheniformis YZCUO202005 from lichens has the potential to promote plant growth and reduce fungal and bacterial pathogens' growth. Furthermore, the results suggest that lichens are naturally rich sources of plant growth promotion and biocontrol agents that would be used in agriculture.
Collapse
Affiliation(s)
- Rudoviko Galileya Medison
- Department of Plant Protection, College of Agriculture, Yangtze University, 266 Jingmi Road, Jingzhou City, Hubei Province, 434025, China
| | - Jianwei Jiang
- Department of Plant Protection, College of Agriculture, Yangtze University, 266 Jingmi Road, Jingzhou City, Hubei Province, 434025, China
| | - Milca Banda Medison
- Department of Plant Protection, College of Agriculture, Yangtze University, 266 Jingmi Road, Jingzhou City, Hubei Province, 434025, China
| | - Li-Tao Tan
- Department of Plant Protection, College of Agriculture, Yangtze University, 266 Jingmi Road, Jingzhou City, Hubei Province, 434025, China
| | - Chicco D.M. Kayange
- Department of Land Resources Conservation, Mulanje District Agriculture Office, P.O. Box 49, Mulanje, Malawi
| | - Zhengxiang Sun
- Department of Plant Protection, College of Agriculture, Yangtze University, 266 Jingmi Road, Jingzhou City, Hubei Province, 434025, China
| | - Yi Zhou
- Department of Plant Protection, College of Agriculture, Yangtze University, 266 Jingmi Road, Jingzhou City, Hubei Province, 434025, China
| |
Collapse
|
14
|
Hyder S, Ul-Nisa M, Shahzadi, Shahid H, Gohar F, Gondal AS, Riaz N, Younas A, Santos-Villalobos SDL, Montoya-Martínez AC, Sehar A, Latif F, Rizvi ZF, Iqbal R. Recent trends and perspectives in the application of metal and metal oxide nanomaterials for sustainable agriculture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107960. [PMID: 37591032 DOI: 10.1016/j.plaphy.2023.107960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 06/05/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Sustainable ecosystem management leads to the use of eco-friendly agricultural techniques for crop production. One of them is the use of metal and metal oxide nanomaterials and nanoparticles, which have proven to be a valuable option for the improvement of agricultural food systems. Moreover, the biological synthesis of these nanoparticles, from plants, bacteria, and fungi, also contributes to their eco-friendly and sustainable characteristics. Nanoparticles, which vary in size from 1 to 100 nm have a variety of mechanisms that are safer and more efficient than conventional fertilizers. Their usage as fertilizers and insecticides in agriculture is gaining favor in the scientific community to maximize crop output. More studies in this field will increase our understanding of this new technology and its broad acceptance in terms of performance, affordability, and environmental protection, as certain nanoparticles may outperform conventional fertilizers and insecticides. Accordingly, to the information gathered in this review, nanoparticles show remarkable potential for enhancing crop production, improving soil quality, and protecting the environment, however, metal and metal oxide NPs are not widely employed in agriculture. Many features of nanoparticles are yet left over, and it is necessary to uncover them. In this sense, this review article provides an overview of various types of metal and metal oxide nanoparticles used in agriculture, their characterization and synthesis, the recent research on them, and their possible application for the improvement of crop productivity in a sustainable manner.
Collapse
Affiliation(s)
- Sajjad Hyder
- Department of Botany, Government College Women University, Sialkot, 51040, Pakistan.
| | - Mushfaq Ul-Nisa
- Department of Botany, Government College Women University, Sialkot, 51040, Pakistan.
| | - Shahzadi
- Department of Botany, Government College Women University, Sialkot, 51040, Pakistan.
| | - Humaira Shahid
- Department of Botany, Government College Women University, Sialkot, 51040, Pakistan.
| | - Faryal Gohar
- Department of Botany, Government College Women University, Sialkot, 51040, Pakistan.
| | - Amjad Shahzad Gondal
- Department of Plant Pathology, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Nadia Riaz
- Department of Botany, Lahore College for Women University, Lahore, 54000, Pakistan.
| | - Afifa Younas
- Department of Botany, Lahore College for Women University, Lahore, 54000, Pakistan.
| | | | - Amelia C Montoya-Martínez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón, SO, Mexico.
| | - Anam Sehar
- Student Affairs and Counselling Office, Lahore Garrison University, DHA Phase VI, Lahore, Pakistan.
| | - Fariha Latif
- Institute of Zoology, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Zarrin Fatima Rizvi
- Department of Botany, Government College Women University, Sialkot, 51040, Pakistan.
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| |
Collapse
|
15
|
Soni S, Jha AB, Dubey RS, Sharma P. Alleviation of chromium stress in plants using metal and metal oxide nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83180-83197. [PMID: 37358773 DOI: 10.1007/s11356-023-28161-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 06/03/2023] [Indexed: 06/27/2023]
Abstract
Chromium (Cr), one of the hazardous pollutants, exists predominantly as Cr(VI) and Cr(III) in the environment. Cr(VI) is more toxic than Cr(III) due to its high mobility and solubility. Elevated levels of Cr in agricultural soil due to various anthropogenic activities cause Cr accumulation in plants, resulting in a significant reduction in plant yield and quality due to Cr-induced physiological, biochemical and molecular alterations. It can infiltrate the food chain through crop plants and cause harmful effects in humans via biomagnification. Cr(VI) is linked to cancer in humans. Therefore, mitigation strategies are required to remediate Cr-polluted soils and limit its accumulation in plants for safe food production. Recent research on metal and metal oxide nanoparticles (NPs) has shown that they can effectively reduce Cr accumulation and phytotoxicity. The effects of these NPs are influenced by their type and dose, exposure method, plant species and experimental settings. In this review, we present an up-to-date compilation and comprehensive analysis of the existing literature regarding the process of uptake and distribution of Cr and impact and potential mechanisms of metal and metal oxide nanoparticles led mitigation of Cr-induced stress in plants. We have also discussed recent developments, existing research gaps and future research directions in the field of Cr stress mitigation by NPs in plants. Overall, this review can provide valuable insights in reducing Cr accumulation and toxicity using metal and metal oxide nanoparticles, thereby promoting safe and sustainable cultivation of food and phytostabilization of Cr-polluted soil.
Collapse
Affiliation(s)
- Sunil Soni
- School of Environment and Sustainable Development, Central University of Gujarat, Sector 30, Gandhinagar, Gujarat, 382030, India
| | - Ambuj Bhushan Jha
- Crop Development Centre/Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
- School of Life Sciences, Central University of Gujarat, Sector 30, Gandhinagar, Gujarat, 382030, India
| | - Rama Shanker Dubey
- Central University of Gujarat, Sector 29, Gandhinagar, Gujarat, 382030, India
| | - Pallavi Sharma
- School of Environment and Sustainable Development, Central University of Gujarat, Sector 30, Gandhinagar, Gujarat, 382030, India.
| |
Collapse
|
16
|
Kouki H, Souihi M, Saadouli I, Balti S, Ayed A, Majdoub N, Mosbah A, Amri I, Mabrouk Y. Biocontrol Potential of Some Rhizospheric Soil Bacterial Strains against Fusarium culmorum and Subsequent Effect on Growth of Two Tunisian Wheat Cultivars. Microorganisms 2023; 11:1165. [PMID: 37317140 DOI: 10.3390/microorganisms11051165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 06/16/2023] Open
Abstract
PGPR (Plant Growth Promoting Rhizobacteria) are used as biofertilizers and biological control agents against fungi. The objective of this work was to evaluate the antagonistic activities of some bacterial strains isolated from soil against four phytopathogenic fungal strains (Fusarium graminearum, F. culmorum, Phytophthora sp. and Verticillium dahlia). Two strains having an antagonist effect on fungi and displaying the maximum of plant growth promoting (PGP) traits were selected for further study and identified as Bacillus subtilis and B. amyloliquefaciens respectively. In planta assays demonstrated that the two Bacillus strains are able to enhance plant growth of two wheat cultivars in absence of nitrogen and protect them against F. culmorum. Pot experiments performed in a greenhouse showed that wheat plants inoculation with two bacterial strains reduce F. culmorum disease severity correlated with the accumulation of phenolic compounds and chlorophyll content. These could partly explain the effectiveness of these bacteria in protecting Tunisian durum wheat cultivars against F. culmorum. Application B. amyloliquefaciens, showed better protection than B. subtilis although the last one enhanced more the plant growth of two wheat cultivars in absence of fungus. Hence, combination of two bacterial strains could be a strategic approach to enhance plant growth and control plant diseases.
Collapse
Affiliation(s)
- Habiba Kouki
- Laboratory of Biotechnology and Nuclear Technology, National Centre for Nuclear Sciences and Technologies (CNSTN), Sidi Thabet, Technopark, Ariana 2020, Tunisia
- Faculty of Sciences of Bizerte, Carthage University, Jarzouna 7021, Tunisia
| | - Mouna Souihi
- Laboratory of Biotechnology and Nuclear Technology, National Centre for Nuclear Sciences and Technologies (CNSTN), Sidi Thabet, Technopark, Ariana 2020, Tunisia
| | - Ilhem Saadouli
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Sabrine Balti
- Laboratory of Biotechnology and Nuclear Technology, National Centre for Nuclear Sciences and Technologies (CNSTN), Sidi Thabet, Technopark, Ariana 2020, Tunisia
- Faculty of Sciences of Bizerte, Carthage University, Jarzouna 7021, Tunisia
| | - Amira Ayed
- Laboratory of Biotechnology and Nuclear Technology, National Centre for Nuclear Sciences and Technologies (CNSTN), Sidi Thabet, Technopark, Ariana 2020, Tunisia
- Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana 2020, Tunisia
| | - Nihed Majdoub
- Laboratory of Biotechnology and Nuclear Technology, National Centre for Nuclear Sciences and Technologies (CNSTN), Sidi Thabet, Technopark, Ariana 2020, Tunisia
| | - Amor Mosbah
- Laboratory of Biotechnology and Valorization of Bio-Geo Resources, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana 2020, Tunisia
| | - Ismail Amri
- Laboratory of Biotechnology and Nuclear Technology, National Centre for Nuclear Sciences and Technologies (CNSTN), Sidi Thabet, Technopark, Ariana 2020, Tunisia
| | - Yassine Mabrouk
- Laboratory of Biotechnology and Nuclear Technology, National Centre for Nuclear Sciences and Technologies (CNSTN), Sidi Thabet, Technopark, Ariana 2020, Tunisia
| |
Collapse
|
17
|
Rehan M, Al-Turki A, Abdelmageed AHA, Abdelhameid NM, Omar AF. Performance of Plant-Growth-Promoting Rhizobacteria (PGPR) Isolated from Sandy Soil on Growth of Tomato ( Solanum lycopersicum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1588. [PMID: 37111812 PMCID: PMC10145201 DOI: 10.3390/plants12081588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
The plant-growth-promoting rhizobacteria (PGPR) in the rhizosphere affect plant growth, health, and productivity, as well as soil-nutrient contents. They are considered a green and eco-friendly technology that will reduce chemical-fertilizer usage, thereby reducing production costs and protecting the environment. Out of 58 bacterial strains isolated in Qassim, Saudi Arabia, four strains were identified by the 16S rRNA as the Streptomyces cinereoruber strain P6-4, Priestia megaterium strain P12, Rossellomorea aquimaris strain P22-2, and Pseudomonas plecoglossicida strain P24. The plant-growth-promoting (PGP) features of the identified bacteria involving inorganic phosphate (P) solubilization, the production of indole acetic acid (IAA), and siderophore secretion were assessed in vitro. Regarding the P solubilization, the previous strains' efficacy reached 37.71%, 52.84%, 94.31%, and 64.20%, respectively. The strains produced considerable amounts of IAA (69.82, 251.70, 236.57, and 101.94 µg/mL) after 4 days of incubation at 30 °C. Furthermore, the rates of siderophore production reached 35.51, 26.37, 26.37, and 23.84 psu, respectively, in the same strains. The application of the selected strains in the presence of rock phosphate (RP) with tomato plants under greenhouse conditions was evaluated. The plant growth and P-uptake traits positively and significantly increased in response to all the bacterial treatments, except for some traits, such as plant height, number of leaves, and leaf DM at 21 DAT, compared to the negative control (rock phosphate, T2). Notably, the P. megaterium strain P12 (T4), followed by R. aquimaris strain P22-2 (T5), revealed the best values related to plant height (at 45 DAT), number of leaves per plant (at 45 DAT), root length, leaf area, leaf-P uptake, stem P uptake, and total plant P uptake compared to the rock phosphate. The first two components of the PCA (principal component analysis) represented 71.99% (PCA1 = 50.81% and PCA2 = 21.18%) of the variation at 45 DAT. Finally, the PGPR improved the vegetative-growth traits of the tomato plants through P solubilization, IAA, and siderophore production, and ameliorated the availability of nutrients. Thus, applying in PGPR in sustainable agriculture will potentially reduce production costs and protect the environment from contamination by chemical fertilizers and pesticides.
Collapse
Affiliation(s)
- Medhat Rehan
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.-T.); (A.H.A.A.); (A.F.O.)
- Department of Genetics, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Ahmad Al-Turki
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.-T.); (A.H.A.A.); (A.F.O.)
| | - Adil H. A. Abdelmageed
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.-T.); (A.H.A.A.); (A.F.O.)
- Department of Horticulture, University of Khartoum, Khartoum North, Shambat 13314, Sudan
| | - Noha M. Abdelhameid
- Soil Fertility and Microbiology Department, Desert Research Center (DRC), Cairo 11753, Egypt;
| | - Ayman F. Omar
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.-T.); (A.H.A.A.); (A.F.O.)
- Plant Pathology and Biotechnology Lab, EPCRS Excellence Center, Department of Plant Pathology, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| |
Collapse
|
18
|
Joshi N, Saraf M, Jha CK, Sudha A, Alharbi SA, Alfarraj S, Datta R. Harnessing the efficacy of multifunctional rhizobacterial consortia for promoting the growth of Anethum graveolens L. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1126621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Co-cultures of bacteria are more metabolically flexible and more tolerant to changes in the environment than single cultures. In order to test for plant growth promotion in a medicinal herb Anethum graveolens L, potent phosphate-solubilizing rhizobacteria were selected, characterized and assessed for their compatibility with each other. Molecular identification of isolates was made by 16s rRNA sequence, and they were identified as Pseudomonas aeruginosaNJC4 (OP289324), Serratia marcescens NJC21 (OP289323) and Bacillus spp. Dual species consortia, namely, Bacillus spp. + Serratia marcescens NJC21 (T1), and Pseudomonas aeruginosa NJC4 + Serratia marcescens NJC21 (T2), were tested for their ability to produce multiple plant beneficial activities such as phosphate solubilization, and ammonia and indole acetic acid production. The best isolate and consortium were evaluated for plant growth promotion activity. A plant treated with consortia T-2 seemed most effective in seed emergence at 84.66%, which was four times superior to the control. Growth and yield characters, along with all different rhizobacterial treatments, were examined by principal component analysis (PCA), where PC1 can explain 51.37% of the total variance and PC2 can explain 26.75%. PC1 was associated with wet biomass, chlorophyll b, and total chlorophyll content, which reflect the strong influence of consortia T-1. At the same time, PC2 was found to be related to dry biomass and chlorophyll a content. This study lends credence to the theory that microbial consortiums consisting of more than one efficient strains may be more effective than single cultures in boosting the increase of agricultural output in a sustainable way.
Collapse
|
19
|
Kahlert L, Lichstrahl MS, Townsend CA. Colorimetric Determination of Adenylation Domain Activity in Nonribosomal Peptide Synthetases by Using Chrome Azurol S. Chembiochem 2023; 24:e202200668. [PMID: 36511946 PMCID: PMC10041650 DOI: 10.1002/cbic.202200668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Adenylation domains are the main contributor to structural complexity among nonribosomal peptides due to their varied but stringent substrate selection. Several in vitro assays to determine the substrate specificity of these dedicated biocatalysts have been implemented, but high sensitivity is often accompanied by the cost of laborious procedures, expensive reagents or the requirement for auxiliary enzymes. Here, we describe a simple protocol that is based on the removal of ferric iron from a preformed chromogenic complex between ferric iron and Chrome Azurol S. Adenylation activity can be rapidly followed by a decrease in absorbance at 630 nm, visualized by a prominent color change from blue to orange.
Collapse
Affiliation(s)
- Lukas Kahlert
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland, 21218, USA
| | - Michael S Lichstrahl
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland, 21218, USA
| | - Craig A Townsend
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland, 21218, USA
| |
Collapse
|
20
|
Solórzano-Acosta R, Toro M, Zúñiga-Dávila D. Plant Growth Promoting Bacteria and Arbuscular Mycorrhizae Improve the Growth of Persea americana var. Zutano under Salt Stress Conditions. J Fungi (Basel) 2023; 9:jof9020233. [PMID: 36836347 PMCID: PMC9967131 DOI: 10.3390/jof9020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/13/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
In Peru, almost 50% of the national agricultural products come from the coast, highlighting the production of avocado. Much of this area has saline soils. Beneficial microorganisms can favorably contribute to mitigating the effect of salinity on crops. Two trials were carried out with var. Zutano to evaluate the role of native rhizobacteria and two Glomeromycota fungi, one from a fallow (GFI) and the other from a saline soil (GWI), in mitigating salinity in avocado: (i) the effect of plant growth promoting rhizobacteria, and (ii) the effect of inoculation with mycorrhizal fungi on salt stress tolerance. Rhizobacteria P. plecoglissicida, and B. subtilis contributed to decrease the accumulation of chlorine, potassium and sodium in roots, compared to the uninoculated control, while contributing to the accumulation of potassium in the leaves. Mycorrhizae increased the accumulation of sodium, potassium, and chlorine ions in the leaves at a low saline level. GWI decreased the accumulation of sodium in the leaves compared to the control (1.5 g NaCl without mycorrhizae) and was more efficient than GFI in increasing the accumulation of potassium in leaves and reducing chlorine root accumulation. The beneficial microorganisms tested are promising in the mitigation of salt stress in avocado.
Collapse
Affiliation(s)
- Richard Solórzano-Acosta
- Laboratorio de Ecología Microbiana y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima 15024, Peru
| | - Marcia Toro
- Laboratorio de Ecología Microbiana y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima 15024, Peru
- Centro de Ecología Aplicada, Instituto de Zoología y Ecología Tropical, Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1041-A, Venezuela
- Correspondence: or (M.T.); (D.Z.-D.)
| | - Doris Zúñiga-Dávila
- Laboratorio de Ecología Microbiana y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima 15024, Peru
- Correspondence: or (M.T.); (D.Z.-D.)
| |
Collapse
|
21
|
Xie R, Takashino M, Igarashi K, Kitagawa W, Kato S. Transcriptional Regulation of Methanol Dehydrogenases in the Methanotrophic Bacterium Methylococcus capsulatus Bath by Soluble and Insoluble Lanthanides. Microbes Environ 2023; 38:ME23065. [PMID: 38092408 PMCID: PMC10728633 DOI: 10.1264/jsme2.me23065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/18/2023] [Indexed: 12/18/2023] Open
Abstract
The effects of soluble and insoluble lanthanides on gene expression in Methylococcus capsulatus Bath were investigated. Genes for lanthanide-containing methanol dehydrogenases (XoxF-MDHs) and their calcium-containing counterparts (MxaFI-MDHs) were up- and down-regulated, respectively, by supplementation with soluble lanthanide chlorides, indicating that M. capsulatus has the "lanthanide switch" observed in other methanotrophs. Insoluble lanthanide oxides also induced the lanthanide switch and were dissolved by the spent medium of M. capsulatus, suggesting the presence of lanthanide-chelating compounds. A transcriptome ana-lysis indicated that a gene cluster for the synthesis of an enterobactin-like metal chelator contributed to the dissolution of insoluble lanthanides.
Collapse
Affiliation(s)
- Ruoyun Xie
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo 060–8589, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 2–17–2–1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062–8517, Japan
| | - Motoko Takashino
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 2–17–2–1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062–8517, Japan
| | - Kensuke Igarashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 2–17–2–1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062–8517, Japan
| | - Wataru Kitagawa
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo 060–8589, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 2–17–2–1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062–8517, Japan
| | - Souichiro Kato
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo 060–8589, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 2–17–2–1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062–8517, Japan
| |
Collapse
|
22
|
Styczynski M, Rogowska A, Nyabayo C, Decewicz P, Romaniuk F, Pączkowski C, Szakiel A, Suessmuth R, Dziewit L. Heterologous production and characterization of a pyomelanin of Antarctic Pseudomonas sp. ANT_H4: a metabolite protecting against UV and free radicals, interacting with iron from minerals and exhibiting priming properties toward plant hairy roots. Microb Cell Fact 2022; 21:261. [PMID: 36527127 PMCID: PMC9756463 DOI: 10.1186/s12934-022-01990-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Antarctica has one of the most extreme environments in the world. This region is inhabited by specifically adapted microorganisms that produce various unique secondary metabolites (e.g. pigments) enabling their survival under the harsh environmental conditions. It was already shown that these natural, biologically active molecules may find application in various fields of biotechnology. RESULTS In this study, a cold-active brown-pigment-producing Pseudomonas sp. ANT_H4 strain was characterized. In-depth genomic analysis combined with the application of a fosmid expression system revealed two different pathways of melanin-like compounds biosynthesis by the ANT_H4 strain. The chromatographic behavior and Fourier-transform infrared spectroscopic analyses allowed for the identification of the extracted melanin-like compound as a pyomelanin. Furthermore, optimization of the production and thorough functional analyses of the pyomelanin were performed to test its usability in biotechnology. It was confirmed that ANT_H4-derived pyomelanin increases the sun protection factor, enables scavenging of free radicals, and interacts with the iron from minerals. Moreover, it was shown for the first time that pyomelanin exhibits priming properties toward Calendula officinalis hairy roots in in vitro cultures. CONCLUSIONS Results of the study indicate the significant biotechnological potential of ANT_H4-derived pyomelanin and open opportunities for future applications. Taking into account protective features of analyzed pyomelanin it may be potentially used in medical biotechnology and cosmetology. Especially interesting was showing that pyomelanin exhibits priming properties toward hairy roots, which creates a perspective for its usage for the development of novel and sustainable agrotechnical solutions.
Collapse
Affiliation(s)
- Michal Styczynski
- grid.12847.380000 0004 1937 1290Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agata Rogowska
- grid.12847.380000 0004 1937 1290Department of Plant Biochemistry, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Christine Nyabayo
- grid.6734.60000 0001 2292 8254Institute of Chemistry, Technical University of Berlin, Berlin, Germany
| | - Przemyslaw Decewicz
- grid.12847.380000 0004 1937 1290Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Filip Romaniuk
- grid.12847.380000 0004 1937 1290Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Cezary Pączkowski
- grid.12847.380000 0004 1937 1290Department of Plant Biochemistry, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Szakiel
- grid.12847.380000 0004 1937 1290Department of Plant Biochemistry, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Roderich Suessmuth
- grid.6734.60000 0001 2292 8254Institute of Chemistry, Technical University of Berlin, Berlin, Germany
| | - Lukasz Dziewit
- grid.12847.380000 0004 1937 1290Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
23
|
Omar AF, Abdelmageed AHA, Al-Turki A, Abdelhameid NM, Sayyed RZ, Rehan M. Exploring the Plant Growth-Promotion of Four Streptomyces Strains from Rhizosphere Soil to Enhance Cucumber Growth and Yield. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233316. [PMID: 36501356 PMCID: PMC9737303 DOI: 10.3390/plants11233316] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 05/13/2023]
Abstract
The genus Streptomyces is the most abundant and essential microbes in the soil microbial community. Streptomyces are familiar and have great potential to produce a large variety of bioactive compounds. This genus considers an efficient biofertilizer based on its plant growth-promoting activities. Based on their ability to produce a wide varieties of bioactive molecules, the present study aimed to explore the potential plant growth promotion of four Streptomyces strains and their role in enhancing cucumber growth and yield under greenhouse conditions. Streptomyces sp. strain HM2, Streptomyces thinghirensis strain HM3, Streptomyces sp. strain HM8, and Streptomyces tricolor strain HM10 were chosen for the current study. Plant growth-promoting (PGP) features, i.e., indole acetic acid (IAA) production, siderophore excretion, and solubilizing phosphate, were evaluated in vitro. All four strains produced IAA, siderophore, and immobilized inorganic phosphate. Following 4 days of incubation at 30 °C, strains HM2, HM3, HM8, and HM10 produced copious amounts of IAA (18, 22, 62, and 146 µg/mL, respectively) and siderophores (42.59, 40.01, 16.84, 64.14% SU, respectively). At the same time, P solubilization efficacy scored 64.3%, 84.4%, 57.2%, and 81.6% with the same frequency. During in planta evaluation, selected Streptomyces strains combined with rock phosphate were assessed as biofertilizers on the growth and yield of cucumber plants. Under all treatments, positive and significant differences in studied traits were manifested except dry stem matter (SDM), net assimilation rate (NAR), relative growth rate (RGR), and fruit firmness (FF). Treatment T4 (rock phosphate + strain HM3) followed by T5 (rock phosphate + strain HM8) revealed the best results for plant height (PH), number of leaves per plant (NLPP), root length (RL), number of fruits per plant (NFPP), fruit length (FL), fruit diameter (FD), fruit fresh weight per plant (FFWPP), soil P (SP) after 21 DAT, and soil P at the end of the experiment. Notably, T6 (rock phosphate + strain HM10) caused a considerable increase in leaf area (LA). Plant growth-promoting bacteria enhance plant growth and yield through phosphorus solubilizing, improve nutrient availability, produce phytohormones, and support plant growth under abiotic stress. These features are important for sustainable agriculture and reducing environmental pollution with chemical fertilizers and pesticides.
Collapse
Affiliation(s)
- Ayman F. Omar
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
- Plant Pathology and Biotechnology Lab, EPCRS Excellence Center, Department of Plant Pathology, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Adil H. A. Abdelmageed
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Horticulture, University of Khartoum, Shambat, Khartoum North 13314, Sudan
| | - Ahmad Al-Turki
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Noha M. Abdelhameid
- Desert Research Center (DRC), Soil Fertility and Microbiology Department, Cairo 11753, Egypt
| | - R. Z. Sayyed
- PSGVP Mandal’s S I Patil Arts, G B Patel Science & STKVS Commerce College, Shahada 425409, India
| | - Medhat Rehan
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
- Correspondence: or
| |
Collapse
|
24
|
Srivastava P, Sahgal M, Sharma K, Enshasy HAE, Gafur A, Alfarraj S, Ansari MJ, Sayyed RZ. Optimization and identification of siderophores produced by Pseudomonas monteilii strain MN759447 and its antagonism toward fungi associated with mortality in Dalbergia sissoo plantation forests. FRONTIERS IN PLANT SCIENCE 2022; 13:984522. [PMID: 36438130 PMCID: PMC9696734 DOI: 10.3389/fpls.2022.984522] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/22/2022] [Indexed: 06/10/2023]
Abstract
Siderophore-positive bacteria present in the rhizosphere and in bulk soil assist plants by either inhibiting phytopathogen proliferation or increasing plant growth. The bacterial diversity of the Shisham forest ecosystem in the Tarai region of the Western Himalayas was studied and used for siderophore production, taking into account the large-scale dieback and wilt-induced mortality in Dalbergia sissoo (common name: shisham) plantation forests and the importance of soil microbes in tree health. In addition, Pseudomonas, Burkholderia, and Streptomyces were prominent siderophore-positive bacteria in Shisham forests. Pseudomonas species are known for their remarkable siderophore-producing ability. Bacterial siderophores inhibit pathogen growth by rapidly lowering the number of ferric ions in the rhizosphere. The Pseudomonas monteilii strain MN759447 was isolated from a D. sissoo plantation forest at the Agroforestry Research Centre, Pantnagar, Uttarakhand (28°58'N 79°25'E/28.97°N 79.41°E). It produces a significant number of siderophore units (80.36% in total). A two-stage optimization of growth factors was attempted in the strain MN759447 for better siderophore recovery. In the first-stage single-factor experiment, among the five variables studied, only pH, NH4NO3 concentration, and Fe concentration affected siderophore synthesis. In the second stage, an optimization of pH, NH4NO3 concentration, and Fe concentration for improved growth and enhanced siderophore production was carried out using a Box-Behnken design with response surface methodology. By using LC-MS, two derivatives of pseudomonine, salicylic acid, and kynurenic acid were detected as siderophores in the purified XAD-2 methanol extract of the P. monteilii strain MN759447. In addition to siderophore production, the P. monteilii strain MN759447 also exhibited a broad range of antagonistic activity against Aspergillus calidoustus (65%), Fusarium oxysporum (41.66%), Talaromyces pinophilus (65%), and Talaromyces verruculosus (65.1%) that are linked to sissoo mortality. To our knowledge, this is the first report on siderophore-producing bacteria isolated, identified, and characterized from the D. sissoo Roxb. forest habitat. This strain can also be developed as a commercial product.
Collapse
Affiliation(s)
- Pragati Srivastava
- Department of Microbiology, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Manvika Sahgal
- Department of Microbiology, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Khanchand Sharma
- Department of Agricultural Engineering, Central University of Nagaland, School of Agricultural Sciences and Rural Development, Dimapur, India
| | - Hesham Ali El Enshasy
- Institute of Bioproduct Development (IBD), UniversitiTeknologi Malaysia (UTM), Skudai, Malaysia
- School of Chemical and Energy Engineering, UniversitiTeknologi Malaysia (UTM), Skudai, Malaysia
- Institute of Bioproduct Development (IBD), City of Scientific Research and Technology Applications (SRTA), Alexandria, Egypt
| | - Abdul Gafur
- Sinarmas Forestry Corporate Research and Development, Perawang, Indonesia
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College, Moradabad (Mahatma Jyotiba Phule Rohilkhand University, Bareilly), Moradabad, India
| | - R. Z. Sayyed
- Asian PGPR Society, Department of Entomology, Auburn University, Auburn, AL, United States
- Department of Microbiology, PSGVP Mandal's S. I. Patil Arts, G. B. Patel Science and STKV Sangh Commerce College, Shahada, India
| |
Collapse
|
25
|
Gowtham HG, Singh SB, Shilpa N, Aiyaz M, Nataraj K, Udayashankar AC, Amruthesh KN, Murali M, Poczai P, Gafur A, Almalki WH, Sayyed RZ. Insight into Recent Progress and Perspectives in Improvement of Antioxidant Machinery upon PGPR Augmentation in Plants under Drought Stress: A Review. Antioxidants (Basel) 2022; 11:1763. [PMID: 36139837 PMCID: PMC9495777 DOI: 10.3390/antiox11091763] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 12/25/2022] Open
Abstract
Agriculture has a lot of responsibility as the rise in the world's population demands more food requirements. However, more than one type of biotic and abiotic stress continually impacts agricultural productivity. Drought stress is a major abiotic stress that significantly affects agricultural productivity every year as the plants undergo several morphological, biochemical, and physiological modifications, such as repressed root and shoot growth, reduced photosynthesis and transpiration rate, excessive production of reactive oxygen species (ROS), osmotic adjustments, and modified leaf senescence regulating and stress signaling pathways. Such modifications may permanently damage the plants; therefore, mitigation strategies must be developed. The use of drought resistant crop cultivars is more expensive and labor-intensive with few advantages. However, exploiting plant growth promoting rhizobacteria (PGPR) is a proven alternative with numerous direct and indirect advantages. The PGPR confers induced systemic tolerance (IST) mechanisms in plants in response to drought stress via multiple mechanisms, including the alteration of root architecture, maintenance of high relative water content, improvement of photosynthesis rate, production of phytohormones, exopolysaccharides, ACC deaminase, carotenoids and volatiles, induction of antioxidant defense system, and alteration in stress-responsive gene expression. The commercial application of PGPR as bioinoculants or biostimulants will remain contingent on more robust strain selection and performance under unfavorable environmental conditions. This review highlights the possible mechanisms of PGPR by activating the plant adaptive defense systems for enhancing drought tolerance and improving overall growth and yield.
Collapse
Affiliation(s)
| | | | - Natarajamurthy Shilpa
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru 570006, India
| | - Mohammed Aiyaz
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, India
| | - Kalegowda Nataraj
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, India
| | | | | | - Mahadevamurthy Murali
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, India
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, 00100 Helsinki, Finland
| | - Abdul Gafur
- Sinarmas Forestry Corporate Research and Development, Perawang 28772, Indonesia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al Qura University, Makkah 77207, Saudi Arabia
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s, S.I. Patil Arts, G.B. Patel Science & STKV Sangh Commerce College, Shahada 425409, India
| |
Collapse
|
26
|
Bano A, Waqar A, Khan A, Tariq H. Phytostimulants in sustainable agriculture. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.801788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The consistent use of synthetic fertilizers and chemicals in traditional agriculture has not only compromised the fragile agroecosystems but has also adversely affected human, aquatic, and terrestrial life. The use of phytostimulants is an alternative eco-friendly approach that eliminates ecosystem disruption while maintaining agricultural productivity. Phytostimulants include living entities and materials, such as microorganisms and nanomaterials, which when applied to plants or to the rhizosphere, stimulate plant growth and induce tolerance to plants against biotic and abiotic stresses. In this review, we focus on plant growth-promoting rhizobacteria (PGPR), beneficial fungi, such as arbuscular mycorrhizal fungi (AMF) and plant growth-promoting fungi (PGPF), actinomycetes, cyanobacteria, azolla, and lichens, and their potential benefits in the crop improvement, and mitigation of abiotic and biotic stresses either alone or in combination. PGPR, AMF, and PGPF are plant beneficial microbes that can release phytohormones, such as indole acetic acid (IAA), gibberellic acid (GA), and cytokinins, promoting plant growth and improving soil health, and in addition, they also produce many secondary metabolites, antibiotics, and antioxidant compounds and help to combat biotic and abiotic stresses. Their ability to act as phytostimulator and a supplement of inorganic fertilizers is considered promising in practicing sustainable agriculture and organic farming. Glomalin is a proteinaceous product, produced by AMF, involved in soil aggregation and elevation of soil water holding capacity under stressed and unstressed conditions. The negative effects of continuous cropping can be mitigated by AMF biofertilization. The synergistic effects of PGPR and PGPF may be more effective. The mechanisms of control exercised by PGPF either direct or indirect to suppress plant diseases viz. by competing for space and nutrients, mycoparasitism, antibiosis, mycovirus-mediated cross-protection, and induced systemic resistance (ISR) have been discussed. The emerging role of cyanobacterial metabolites and the implication of nanofertilizers have been highlighted in sustainable agriculture.
Collapse
|
27
|
Hoseini A, Salehi A, Sayyed RZ, Balouchi H, Moradi A, Piri R, Fazeli-Nasab B, Poczai P, Ansari MJ, Obaid SA, Datta R. Efficacy of biological agents and fillers seed coating in improving drought stress in anise. FRONTIERS IN PLANT SCIENCE 2022; 13:955512. [PMID: 35937352 PMCID: PMC9355580 DOI: 10.3389/fpls.2022.955512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/24/2022] [Indexed: 06/12/2023]
Abstract
Many plants, including anise, have tiny, non-uniform seeds with low and light nutrient reserves. The seeds also show a weak establishment, especially under stressful conditions where their accurate planting in the soil and optimal yield are tough. This study sought to improve anise seeds' physical and physiological characteristics under drought stress. To this end, two factorial experiments under laboratory and greenhouse conditions were performed in a completely randomized design with 4 and 3 replications, respectively. Five levels of seed inoculation (inoculation with T36 and T43 of Trichoderma harzianum, and CHA0 and B52 of Pseudomonas fluorescent, and non-inoculation which means that control seeds were not treated with microbial inoculant), three levels of coating (K10P20, K10P10V5, and non-coating), and three levels of drought stress (0, -3, and -6 bars) were considered as the factorial experiment [vermiculite (V), kaolin (K), and perlite (P) numbers refer to the amount of material used in grams]. The laboratory experiment revealed that the combined treatments of bio-agents with coating increased the physical and germination characteristics of anise seeds compared to the control treatment. The greenhouse experiment showed that drought stress reduced the initial growth indices. Still, the combination treatments of biological agents and coating (fillers) could alleviate the destructive effects of drought stress to some extent and improve these indices. The best treatment was provided by T36 and K10P20 in both experiments, which significantly increased morphological indices.
Collapse
Affiliation(s)
- Atefeh Hoseini
- Department of Agronomy and Plant Breeding, Yasouj University, Yasouj, Iran
| | - Amin Salehi
- Department of Agronomy and Plant Breeding, Yasouj University, Yasouj, Iran
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s S I Patil Arts, G B Patel Science, and STKV Sangh Commerce College, Shahada, India
| | - Hamidreza Balouchi
- Department of Agronomy and Plant Breeding, Yasouj University, Yasouj, Iran
| | - Ali Moradi
- Department of Agronomy and Plant Breeding, Yasouj University, Yasouj, Iran
| | - Ramin Piri
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Tehran, Tehran, Iran
| | - Bahman Fazeli-Nasab
- Department of Agronomy and Plant Breeding, Agriculture Institute, Research Institute of Zabol, Zabol, Iran
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College, (Mahatma Jyotiba Phule Rohilkhand University, Bareilly), Moradabad, India
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rahul Datta
- Department of Geology and Pedology, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
28
|
Khumairah FH, Setiawati MR, Fitriatin BN, Simarmata T, Alfaraj S, Ansari MJ, Enshasy HAE, Sayyed RZ, Najafi S. Halotolerant Plant Growth-Promoting Rhizobacteria Isolated From Saline Soil Improve Nitrogen Fixation and Alleviate Salt Stress in Rice Plants. Front Microbiol 2022; 13:905210. [PMID: 35770168 PMCID: PMC9236307 DOI: 10.3389/fmicb.2022.905210] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/13/2022] [Indexed: 01/11/2023] Open
Abstract
Salinity is one of the most damaging abiotic stresses due to climate change impacts that affect the growth and yield of crops, especially in lowland rice fields and coastal areas. This research aimed to isolate potential halotolerant plant growth-promoting rhizobacteria from different rhizo-microbiome and use them as effective bioinoculants to improve rice growth under salinity stress conditions. Bioassay using rice seedlings was performed in a randomized block design consisting of 16 treatments (control and 15 bacterial isolates) with three replications. Results revealed that isolates S3, S5, and S6 gave higher shoot height, root length, and plant dry weight compared with control (without isolates). Based on molecular characteristics, isolates S3 and S5 were identified as Pseudomonas stutzeri and Klebsiella pneumonia. These isolates were able to promote rice growth under salinity stress conditions as halotolerant plant growth-promoting rhizobacteria. These three potent isolates were found to produce indole-3-acetic acid and nitrogenase.
Collapse
Affiliation(s)
- Fiqriah Hanum Khumairah
- Department of Soil Science, University of Padjadjaran, Jatinangor, Indonesia
- Department of Forestry Management, State Agricultural Polytechnic of Samarinda, Samarinda, Indonesia
| | | | | | - Tualar Simarmata
- Department of Soil Science, University of Padjadjaran, Jatinangor, Indonesia
| | - Saleh Alfaraj
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad, Mahatma Jyotiba Phule Rohilkhand University Bareilly, Bareilly, India
| | - Hesham A. El Enshasy
- Universiti Teknologi Malaysia (UTM), Institute of Bioproduct Development (IBD), Skudai, Malaysia
- Universiti Teknologi Malaysia (UTM), School of Chemical and Energy Engineering, Faculty of Engineering, Skudai, Malaysia
- City of Scientific Research and Technology Applications (SRTA), Alexandria, Egypt
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s S I Patil Arts, G B Patel Science, and STKVS Commerce College, Shahada, India
- Department of Entomology, Asian PGPR Society for Sustainable Agriculture, Auburn University, Auburn, AL, United States
| | - Solmaz Najafi
- Department of Field Crops, Faculty of Agriculture, Van Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
29
|
Roskova Z, Skarohlid R, McGachy L. Siderophores: an alternative bioremediation strategy? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153144. [PMID: 35038542 DOI: 10.1016/j.scitotenv.2022.153144] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 05/15/2023]
Abstract
Siderophores are small molecular weight iron scavengers that are mainly produced by bacteria, fungi, and plants. Recently, they have attracted increasing attention because of their potential role in environmental bioremediation. Although siderophores are generally considered to exhibit high specificity for iron, they have also been reported to bind to various metal and metalloid ions. This unique ability allows siderophores to solubilise and mobilise heavy metals and metalloids from soil, thereby facilitating their bioremediation. In addition, because of their redox nature, they can mediate the production of reactive oxygen species (ROS), and thus promote the biodegradation of organic contaminants. The aim of this review is to summarise the existing knowledge on the developed strategies of siderophore-assisted bioremediation of metals, metalloids, and organic contaminants. Additionally, this review also includes the biosynthesis and classification of microbial and plant siderophores.
Collapse
Affiliation(s)
- Zuzana Roskova
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic
| | - Radek Skarohlid
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic
| | - Lenka McGachy
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic.
| |
Collapse
|
30
|
Sagar A, Sayyed RZ, Ramteke PW, Ramakrishna W, Poczai P, Al Obaid S, Ansari MJ. Synergistic Effect of Azotobacter nigricans and Nitrogen Phosphorus Potassium Fertilizer on Agronomic and Yieldtraits of Maize ( Zea mays L.). FRONTIERS IN PLANT SCIENCE 2022; 13:952212. [PMID: 35991457 PMCID: PMC9384888 DOI: 10.3389/fpls.2022.952212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/23/2022] [Indexed: 05/06/2023]
Abstract
Plant growth-promoting bacteria (PGPB) Azotobacter spp. is the most promising bacteria among all microorganisms. It is an aerobic, free-living, and N2-fixing bacterium that commonly lives in soil, water, and sediments. It can be used as a biofertilizer for plant growth and nutrient utilization efficiency. Maize is the highly consumed cereal food crop of the cosmopolitan population, and the sustainable maize productivity achieved by applying bacteria in combination with nitrogen phosphorus potassium (NPK) is promising. In the present study, a bacterial isolate (PR19). Azotobacter nigricans, obtained from the soil of an organic farm was evaluated for its plant growth promoting potential alone and in combination with an inorganic fertilizer (NPK) included. The bacterial cultue (PR19) was screened for its morphological, biochemical, and plant growth-promoting characteristics, sequenced by the 16S rDNA method, and submitted to NCBI for the confirmation of strain identification. Further, the inoculation effect of the bacterial culture (PR19) in combination with NPK on growth and yield parameters of maize under pot were analyzed. Based on phenotypic and molecular characteristics, PR19 was identified as Azotobacter nigricans it was submitted to NCBI genbank under the accession No. KP966496. The bacterial isolate possessed multiple plant growth-promoting (MPGP) traits such as the production of ammonia, siderophore, indole-3-acetic acid (IAA), and ACC Deaminase (ACCD). It showed phosphate solubilization activity and tolerance to 20% salt, wide range of pH 5-9, higher levels of trace elements and heavy metals, and resistance to multiple antibiotics. PR19 expressed significantly increased (p < 0.001) antioxidant enzyme activities (SOD, CAT, and GSH) under the abiotic stress of salinity and pH. In vitro condition, inoculation of maize with the PR19 showed a significant increase in seed germination and enhancement in elongation of root and shoot compared to untreated control. The combined application of the PR19 and NPK treatments showed similar significant results in all growth and yield parameters of maize variety SHIATS-M S2. This study is the first report on the beneficial effects of organic farm isolated PR19-NPK treatment combinations on sustainable maize productivity.
Collapse
Affiliation(s)
- Alka Sagar
- Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut, India
- *Correspondence: Alka Sagar,
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s S. I. Patil Arts, G. B. Patel Science and S. T. K. V Sangh Commerce College, Shahada, India
- R. Z. Sayyed,
| | | | | | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Peter Poczai,
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College, Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| |
Collapse
|
31
|
Dave A, Ingle S. Potential of Streptomyces and Its Secondary Metabolites for Biocontrol of Fungal Plant Pathogens. Fungal Biol 2022. [DOI: 10.1007/978-3-031-04805-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
32
|
Kapadia C, Patel N, Rana A, Vaidya H, Alfarraj S, Ansari MJ, Gafur A, Poczai P, Sayyed RZ. Evaluation of Plant Growth-Promoting and Salinity Ameliorating Potential of Halophilic Bacteria Isolated From Saline Soil. FRONTIERS IN PLANT SCIENCE 2022; 13:946217. [PMID: 35909789 PMCID: PMC9335293 DOI: 10.3389/fpls.2022.946217] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 05/09/2023]
Abstract
Among the biotic and abiotic stress affecting the physical, chemical, and biological properties of soil, salinity is a major threat that leads to the desertification of cultivable land throughout the world. The existence of diverse and versatile microbial populations inhabiting the nutrient-rich soil and varied soil conditions affects the soil dynamism. A normal soil constitutes 600 million bacteria belonging to about 20,000 species, which is reduced to 1 million with 5,000-8,000 species in stress conditions. Plant growth-promoting rhizobacteria (PGPR) are in symbiotic association with the plant system, which helps in combating the abiotic stress and increases the overall productivity and yield. These microorganisms are actively associated with varied cellular communication processes through quorum sensing and secondary metabolites such as the production of Indole-3-acetic acid (IAA), exopolysaccharide (EPS) siderophore, ammonia, ACC deaminase, and solubilization of phosphate. The present study focused on the isolation, identification, and characterization of the microorganisms isolated from the seacoast of Dandi, Navsari. Twelve isolates exhibited PGP traits at a high salt concentration of 15-20%. AD9 isolate identified as Bacillus halotolerans showed a higher ammonia production (88 ± 1.73 μg/mL) and phosphate solubilization (86 ± 3.06 μg/mL) at 15% salt concentration, while AD32* (Bacillus sp. clone ADCNO) gave 42.67 ±1.20 μg/mL IAA production at 20% salt concentration. AD2 (Streptomyces sp. clone ADCNB) and AD26 (Achromobacter sp. clone ADCNI) showed ACC deaminase activity of 0.61 ± 0.12 and 0.60 ± 0.04 nM α-ketobutyrate/mg protein/h, respectively. AD32 (Bacillus sp. clone ADCNL) gave a high siderophore activity of 65.40 ± 1.65%. These isolates produced salinity ameliorating traits, total antioxidant activities, and antioxidant enzymes viz. superoxide dismutase (SOD), Glutathione oxidase (GSH), and catalase (CAT). Inoculation of the multipotent isolate that produced PGP traits and salinity ameliorating metabolites promoted the plant growth and development in rice under salinity stress conditions. These results in 50% more root length, 25.00% more plant dry weight, and 41% more tillers compared to its control.
Collapse
Affiliation(s)
- Chintan Kapadia
- Department of Plant Molecular Biology and Biotechnology, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Navsari, India
| | - Nafisa Patel
- Naran Lala College of Professional and Applied Sciences, Navsari, India
- *Correspondence: Nafisa Patel
| | - Ankita Rana
- Naran Lala College of Professional and Applied Sciences, Navsari, India
| | - Harihar Vaidya
- Department of Plant Molecular Biology and Biotechnology, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Navsari, India
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| | - Abdul Gafur
- Sinarmas Forestry Corporate Research and Development, Perawang, Indonesia
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Peter Poczai
| | - R. Z. Sayyed
- Department of Entomology, Asian PGPR Society for Sustainable Agriculture, Auburn University, Auburn, AL, United States
- Department of Microbiology, PSGVP Mandal's‘S I Patil Arts, G B Patel Science, and STKV Sangh Commerce College, Shahada, India
- R. Z. Sayyed
| |
Collapse
|
33
|
Wang Y, Huang W, Li Y, Yu F, Penttinen P. Isolation, characterization, and evaluation of a high-siderophore-yielding bacterium from heavy metal-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3888-3899. [PMID: 34402014 DOI: 10.1007/s11356-021-15996-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal-resistant siderophore-producing bacteria (SPB) with plant growth-promoting traits can assist in phytoremediation of heavy metal-contaminated soil. We isolated siderophore-producing bacteria from Pb and Zn mine soil in Shangyu, Zhejiang, China. The isolate with the highest siderophore production, strain SX9, was identified as Burkholderia sp. Burkholderia sp. SX9 produced catecholate-type siderophore, with the highest production at a pH range of 6.0 to 8.0, a temperature range of 20 to 30 °C and NaCl concentration below 2%. Siderophore production was highest without Fe3+ and became gradually lower with increasing Fe3+ concentration. Minimal inhibitory concentrations (MIC) of Pb2+, Zn2+, Cu2+, and Cd2+ were 4000, 22000, 5000, and 2000 μmol L-1, respectively. The strain had a strong metal solubilization ability: the contents of Cu2+, Zn2+, and Cd2+ in the supernatant were 47.4%, 133.0%, and 35.4% higher, respectively, in strain SX9-inoculated cultures than in the not inoculated controls. The siderophore produced by strain SX9 could combine with Fe3+, Zn2+, and Cd2+ with good effectiveness. The plant growth-promoting traits of the strain included indole acetic acid (IAA) production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, and phosphate solubilization capability. Compared to the uninoculated growth medium and SX9 culture supernatant, the germination rate of Lolium perenne seeds was higher when inoculated with strain SX9 culture. In the experiment of seed germination, adding bacterial culture or supernatant could alleviate the toxicity of heavy metals to L. perenne seed germination. Under Cu2+ and Zn2+ stress, strain SX9 promoted the germination rate. Taken together, Burkholderia sp. SX9 had properties beneficial in the microbial enhancement of phytoremediation of soil contaminated with heavy metals.
Collapse
Affiliation(s)
- Yajun Wang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang, 311300, People's Republic of China
| | - Wei Huang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang, 311300, People's Republic of China
| | - Yaqian Li
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang, 311300, People's Republic of China
| | - Fangbo Yu
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang, 311300, People's Republic of China.
| | - Petri Penttinen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
34
|
Pramanik K, Mandal S, Banerjee S, Ghosh A, Maiti TK, Mandal NC. Unraveling the heavy metal resistance and biocontrol potential of Pseudomonas sp. K32 strain facilitating rice seedling growth under Cd stress. CHEMOSPHERE 2021; 274:129819. [PMID: 33582538 DOI: 10.1016/j.chemosphere.2021.129819] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/09/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Heavy metal and metalloid toxicity in agricultural land needs special attention for crop production essential to feed increasing population globally. Plant growth-promoting rhizobacteria (PGPR) are native biological agents that have tremendous potential to augment crop production in contaminated fields. This study involves selection and identification (through 16S rRNA gene sequence and FAME analysis) of a potent Pseudomonas sp. (strain K32) isolated from a metal-contaminated rice rhizosphere, aimed to its application for sustainable agriculture. Apart from multi-heavy metal(loid) resistance (Cd2+, Pb2+ and As3+ upto 4000, 3800, 3700 μg/ml respectively) along with remarkable Cd bioaccumulation potential (∼90%), this strain showed IAA production, nitrogen-fixation and phosphate solubilization under Cd stress. This bioaccumulation efficiency coupled with PGP traits resulted in the significant enhancement of rice seedling growth under Cd stress. This positive impact of K32 strain was clearly manifested in morphological and biochemical improvements under Cd stress including successful root colonization with rice roots. Cd uptake was also reduced significantly in seedlings in presence of K32 strain. Together with all mentioned properties, K32 showed bio-control potential against plant pathogenic fungi viz. Aspergillus flavus, Aspergillus parasiticus, Paecilomyces sp., Cladosporium herbarum, Rhizopus stolonifer and Alternaria alternata which establish K32 strain a key player in effective bioremediation of agricultural fields. Biocontrol potential was found to be the result of enzymatic activities viz. chitinase, β-1,3-glucanase and protease which were estimated as 8.17 ± 0.44, 4.38 ± 0.35 and 7.72 ± 0.28 U/mg protein respectively.
Collapse
Affiliation(s)
- Krishnendu Pramanik
- Mycology and Plant Pathology Laboratory, Department of Botany, Siksha Bhavana, Visva-Bharati, Santiniketan, Birbhum, PIN-731235, West Bengal, India.
| | - Subhrangshu Mandal
- Department of Botany, Siksha Bhavana, Visva-Bharati, Santiniketan, Birbhum, PIN-731235, West Bengal, India.
| | - Sandipan Banerjee
- Mycology and Plant Pathology Laboratory, Department of Botany, Siksha Bhavana, Visva-Bharati, Santiniketan, Birbhum, PIN-731235, West Bengal, India.
| | - Antara Ghosh
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, PIN-713104, West Bengal, India.
| | - Tushar Kanti Maiti
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, PIN-713104, West Bengal, India.
| | - Narayan Chandra Mandal
- Mycology and Plant Pathology Laboratory, Department of Botany, Siksha Bhavana, Visva-Bharati, Santiniketan, Birbhum, PIN-731235, West Bengal, India.
| |
Collapse
|
35
|
Production, Purification, and Characterization of Bacillibactin Siderophore of Bacillus subtilis and Its Application for Improvement in Plant Growth and Oil Content in Sesame. SUSTAINABILITY 2021. [DOI: 10.3390/su13105394] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Siderophores are low molecular weight secondary metabolites produced by microorganisms under low iron stress as a specific iron chelator. In the present study, a rhizospheric bacterium was isolated from the rhizosphere of sesame plants from Salem district, Tamil Nadu, India and later identified as Bacillus subtilis LSBS2. It exhibited multiple plant-growth-promoting (PGP) traits such as hydrogen cyanide (HCN), ammonia, and indole acetic acid (IAA), and solubilized phosphate. The chrome azurol sulphonate (CAS) agar plate assay was used to screen the siderophore production of LSBS2 and quantitatively the isolate produced 296 mg/L of siderophores in succinic acid medium. Further characterization of the siderophore revealed that the isolate produced catecholate siderophore bacillibactin. A pot culture experiment was used to explore the effect of LSBS2 and its siderophore in promoting iron absorption and plant growth of Sesamum indicum L. Data from the present study revealed that the multifarious Bacillus sp. LSBS2 could be exploited as a potential bioinoculant for growth and yield improvement in S. indicum.
Collapse
|
36
|
Kuzyk SB, Hughes E, Yurkov V. Discovery of Siderophore and Metallophore Production in the Aerobic Anoxygenic Phototrophs. Microorganisms 2021; 9:microorganisms9050959. [PMID: 33946921 PMCID: PMC8146977 DOI: 10.3390/microorganisms9050959] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
Aerobic anoxygenic phototrophs have been isolated from a rich variety of environments including marine ecosystems, freshwater and meromictic lakes, hypersaline springs, and biological soil crusts, all in the hopes of understanding their ecological niche. Over 100 isolates were chosen for this study, representing 44 species from 27 genera. Interactions with Fe3+ and other metal(loid) cations such as Mg2+, V3+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Se4+ and Te2+ were tested using a chromeazurol S assay to detect siderophore or metallophore production, respectively. Representatives from 20 species in 14 genera of α-Proteobacteria, or 30% of strains, produced highly diffusible siderophores that could bind one or more metal(loid)s, with activity strength as follows: Fe > Zn > V > Te > Cu > Mn > Mg > Se > Ni > Co. In addition, γ-proteobacterial Chromocurvus halotolerans, strain EG19 excreted a brown compound into growth medium, which was purified and confirmed to act as a siderophore. It had an approximate size of ~341 Da and drew similarities to the siderophore rhodotorulic acid, a member of the hydroxamate group, previously found only among yeasts. This study is the first to discover siderophore production to be widespread among the aerobic anoxygenic phototrophs, which may be another key method of metal(loid) chelation and potential detoxification within their environments.
Collapse
|
37
|
Kusale SP, Attar YC, Sayyed RZ, Malek RA, Ilyas N, Suriani NL, Khan N, El Enshasy HA. Production of Plant Beneficial and Antioxidants Metabolites by Klebsiellavariicola under Salinity Stress. Molecules 2021; 26:1894. [PMID: 33810565 PMCID: PMC8037558 DOI: 10.3390/molecules26071894] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 01/25/2023] Open
Abstract
Bacteria that surround plant roots and exert beneficial effects on plant growth are known as plant growth-promoting rhizobacteria (PGPR). In addition to the plant growth-promotion, PGPR also imparts resistance against salinity and oxidative stress and needs to be studied. Such PGPR can function as dynamic bioinoculants under salinity conditions. The present study reports the isolation of phytase positive multifarious Klebsiella variicola SURYA6 isolated from wheat rhizosphere in Kolhapur, India. The isolate produced various plant growth-promoting (PGP), salinity ameliorating, and antioxidant traits. It produced organic acid, yielded a higher phosphorous solubilization index (9.3), maximum phytase activity (376.67 ± 2.77 U/mL), and copious amounts of siderophore (79.0%). The isolate also produced salt ameliorating traits such as indole acetic acid (78.45 ± 1.9 µg/mL), 1 aminocyclopropane-1-carboxylate deaminase (0.991 M/mg/h), and exopolysaccharides (32.2 ± 1.2 g/L). In addition to these, the isolate also produced higher activities of antioxidant enzymes like superoxide dismutase (13.86 IU/mg protein), catalase (0.053 IU/mg protein), and glutathione oxidase (22.12 µg/mg protein) at various salt levels. The isolate exhibited optimum growth and maximum secretion of these metabolites during the log-phase growth. It exhibited sensitivity to a wide range of antibiotics and did not produce hemolysis on blood agar, indicative of its non-pathogenic nature. The potential of K. variicola to produce copious amounts of various PGP, salt ameliorating, and antioxidant metabolites make it a potential bioinoculant for salinity stress management.
Collapse
Affiliation(s)
- Supriya P. Kusale
- Department of Microbiology, Rajaram College, Kolhapur 416004, India;
| | - Yasmin C. Attar
- Department of Microbiology, Rajaram College, Kolhapur 416004, India;
| | - R. Z. Sayyed
- Department of Microbiology, P.S.G.V.P. Mandal’s, Arts, Science, and Commerce College, Shahada 425409, India;
| | - Roslinda A. Malek
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai 81310, Malaysia;
| | - Noshin Ilyas
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan;
| | - Ni Luh Suriani
- Biology Department, Faculty of Mathematics and Natural Science, Udayana University, Bali 80361, Indonesia;
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Hesham A. El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai 81310, Malaysia;
- City of Scientific Research and Technology Applications (SRTA), New Burg Al Arab, Alexandria 21934, Egypt
| |
Collapse
|
38
|
Exopolysaccharides Producing Bacteria for the Amelioration of Drought Stress in Wheat. SUSTAINABILITY 2020. [DOI: 10.3390/su12218876] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This research was designed to elucidate the role of exopolysaccharides (EPS) producing bacterial strains for the amelioration of drought stress in wheat. Bacterial strains were isolated from a farmer’s field in the arid region of Pakistan. Out of 24 isolated stains, two bacterial strains, Bacillus subtilis (Accession No. MT742976) and Azospirillum brasilense (Accession No. MT742977) were selected, based on their ability to produce EPS and withstand drought stress. Both bacterial strains produced a good amount of EPS and osmolytes and exhibited drought tolerance individually, however, a combination of these strains produced higher amounts of EPS (sugar 6976 µg/g, 731.5 µg/g protein, and 1.1 mg/g uronic acid) and osmolytes (proline 4.4 µg/mg and sugar 79 µg/mg) and significantly changed the level of stress-induced phytohormones (61%, 49% and 30% decrease in Indole Acetic Acid (IAA), Gibberellic Acid (GA), and Cytokinin (CK)) respectively under stress, but an increase of 27.3% in Abscisic acid (ABA) concentration was observed. When inoculated, the combination of these strains improved seed germination, seedling vigor index, and promptness index by 18.2%, 23.7%, and 61.5% respectively under osmotic stress (20% polyethylene glycol, PEG6000). They also promoted plant growth in a pot experiment with an increase of 42.9%, 29.8%, and 33.7% in shoot length, root length, and leaf area, respectively. Physiological attributes of plants were also improved by bacterial inoculation showing an increase of 39.8%, 61.5%, and 45% in chlorophyll a, chlorophyll b, and carotenoid content respectively, as compared to control. Inoculations of bacterial strains also increased the production of osmolytes such asproline, amino acid, sugar, and protein by 30%, 23%, 68%, and 21.7% respectively. Co-inoculation of these strains enhanced the production of antioxidant enzymes such as superoxide dismutase (SOD) by 35.1%, catalase (CAT) by 77.4%, and peroxidase (POD) by 40.7%. Findings of the present research demonstrated that EPS, osmolyte, stress hormones, and antioxidant enzyme-producing bacterial strains impart drought tolerance in wheat and improve its growth, morphological attributes, physiological parameters, osmolytes production, and increase antioxidant enzymes.
Collapse
|
39
|
The Importance of Microbial Inoculants in a Climate-Changing Agriculture in Eastern Mediterranean Region. ATMOSPHERE 2020. [DOI: 10.3390/atmos11101136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Climate change has gained importance due to its severe consequences for many aspects of life. Increasing temperature, drought and greenhouse gases affect directly or indirectly the productivity of agricultural and natural ecosystems as well as human health. The nutrient supply capacity of the soil is diminishing, while food requirements for the growing population are increasing. The ongoing application of agrochemicals results in adverse effects on ecosystem functioning and food chain. Now, more than ever, there is a need to mitigate the effects of agricultural activities on climate change using environmentally friendly techniques. The role of plant beneficial microorganisms on this global challenge is increasingly being explored, and there is strong evidence that could be important. The use of functional microbial guilds forms an alternative or even a supplementary approach to common agricultural practices, due to their ability to act as biofertilizers and promote plant growth. Application of microbial inocula has a significantly lower impact on the environment compared to chemical inputs, while the agricultural sector will financially benefit, and consumers will have access to quality products. Microbial inoculants could play an important role in agricultural stress management and ameliorate the negative impacts of climate change. This short review highlights the role of microbes in benefiting agricultural practices against climate-changing conditions. In particular, the main microbial plant growth-promoting functional traits that are related to climate change are presented and discussed. The importance of microbial inoculants’ multifunctionality is debated, while future needs and challenges are also highlighted.
Collapse
|
40
|
Co-Inoculation of Rhizobacteria and Biochar Application Improves Growth and Nutrientsin Soybean and Enriches Soil Nutrients and Enzymes. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10081142] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Gradual depletion in soil nutrients has affected soil fertility, soil nutrients, and the activities of soil enzymes. The applications of multifarious rhizobacteria can help to overcome these issues, however, the effect of co-inoculation of plant-growth promoting rhizobacteria (PGPR) and biochar on growth andnutrient levelsin soybean and on the level of soil nutrients and enzymes needs in-depth study. The present study aimed to evaluate the effect of co-inoculation of multifarious Bradyrhizobium japonicum USDA 110 and Pseudomonas putida TSAU1 and different levels (1 and 3%) of biochar on growth parameters and nutrient levelsin soybean and on the level of soil nutrients and enzymes. Effect of co-inoculation of rhizobacteria and biochar (1 and 3%) on the plant growth parameters and soil biochemicals were studied in pot assay experiments under greenhouse conditions. Both produced good amounts of indole-acetic acid; (22 and 16 µg mL−1), siderophores (79 and 87%SU), and phosphate solubilization (0.89 and 1.02 99 g mL−1). Co-inoculation of B. japonicum with P. putida and 3% biochar significantly improved the growth and nutrient content ofsoybean and the level of nutrients and enzymes in the soil, thus making the soil more fertile to support crop yield. The results of this research provide the basis of sustainable and chemical-free farming for improved yields and nutrients in soybean and improvement in soil biochemical properties.
Collapse
|
41
|
Siderophore production in groundnut rhizosphere isolate, Achromobacter sp. RZS2 influenced by physicochemical factors and metal ions. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42398-019-00070-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Talaromyces trachyspermus, an endophyte from Withania somnifera with plant growth promoting attributes. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42398-019-00045-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
43
|
Chen H. Metal based nanoparticles in agricultural system: behavior, transport, and interaction with plants. CHEMICAL SPECIATION & BIOAVAILABILITY 2018. [DOI: 10.1080/09542299.2018.1520050] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Hao Chen
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR, USA
| |
Collapse
|