1
|
Yuda GPWC, Hanif N, Hermawan A. Computational Screening Using a Combination of Ligand-Based Machine Learning and Molecular Docking Methods for the Repurposing of Antivirals Targeting the SARS-CoV-2 Main Protease. Daru 2024; 32:47-65. [PMID: 37907683 PMCID: PMC11087449 DOI: 10.1007/s40199-023-00484-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/20/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND COVID-19 is an infectious disease caused by SARS-CoV-2, a close relative of SARS-CoV. Several studies have searched for COVID-19 therapies. The topics of these works ranged from vaccine discovery to natural products targeting the SARS-CoV-2 main protease (Mpro), a potential therapeutic target due to its essential role in replication and conserved sequences. However, published research on this target is limited, presenting an opportunity for drug discovery and development. METHOD This study aims to repurpose 10692 drugs in DrugBank by using ligand-based virtual screening (LBVS) machine learning (ML) with Konstanz Information Miner (KNIME) to seek potential therapeutics based on Mpro inhibitors. The top candidate compounds, the native ligand (GC-376) of the Mpro inhibitor, and the positive control boceprevir were then subjected to absorption, distribution, metabolism, excretion, and toxicity (ADMET) characterization, drug-likeness prediction, and molecular docking (MD). Protein-protein interaction (PPI) network analysis was added to provide accurate information about the Mpro regulatory network. RESULTS This study identified 3,166 compound candidates inhibiting Mpro. The random forest (RF) molecular access system ML model provided the highest confidence score of 0.95 (bromo-7-nitroindazole) and identified the top 22 candidate compounds. Subjecting the 22 candidate compounds, the native ligand GC-376, and boceprevir to further ADMET property characterization and drug-likeness predictions revealed that one compound had two violations of Lipinski's rule. Additional MD results showed that only five compounds had more negative binding energies than the native ligand (- 12.25 kcal/mol). Among these compounds, CCX-140 exhibited the lowest score of - 13.64 kcal/mol. Through literature analysis, six compound classes with potential activity for Mpro were discovered. They included benzopyrazole, azole, pyrazolopyrimidine, carboxylic acids and derivatives, benzene and substituted derivatives, and diazine. Four pathologies were also discovered on the basis of the Mpro PPI network. CONCLUSION Results demonstrated the efficiency of LBVS combined with MD. This combined strategy provided positive evidence showing that the top screened drugs, including CCX-140, which had the lowest MD score, can be reasonably advanced to the in vitro phase. This combined method may accelerate the discovery of therapies for novel or orphan diseases from existing drugs.
Collapse
Affiliation(s)
- Gusti Putu Wahyunanda Crista Yuda
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Naufa Hanif
- Master Student of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, 06100, Turkey
| | - Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia.
- Laboratory of Advanced Pharmaceutical Sciences. APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia.
| |
Collapse
|
2
|
Lan SH, Lai CC, Chang SP, Lu LC, Hung SH, Lin WT. Favipiravir-based treatment for outcomes of patients with COVID-19: a systematic review and meta-analysis of randomized controlled trials. Expert Rev Clin Pharmacol 2022; 15:759-766. [PMID: 35579014 DOI: 10.1080/17512433.2022.2078701] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND This meta-analysis of randomized controlled trials (RCTs) investigated the clinical efficacy and safety of favipiravir for patients with mild-to-critical COVID-19. METHODS PubMed, Web of Science, Ovid Medline, Embase, and Cochrane Central Register of Controlled Trials were searched for RCTs published before October 30, 2021. Only RCTs that compared the clinical efficacy and safety of favipiravir -based antiviral regimens (study group) with other alternative treatments or placebos (control group) in patients with COVID-19 were included. RESULTS Overall, the clinical improvement rate was significantly higher in the study group than in the control group at the assessment conducted after 14 days (OR, 1.83; 95% CI, 1.12-2.98). The rate of virological eradication was significantly higher in the study group than in the control group at the assessment conducted after 28 days (OR, 2.09; 95% CI, 1.15-3.78). No significant difference was observed in the rates of invasive mechanical ventilation requirement or ICU admission, mortality, or risk of an adverse event between the study and control groups. CONCLUSIONS Except the clinical improvement rate within 14 days and the virological eradication rate within 28 days, favipiravir-based treatment did not provide significantly additional benefit for patients with COVID-19. Therefore, more evidence is necessary.
Collapse
Affiliation(s)
- Shao-Huan Lan
- School of Pharmaceutical Sciences and Medical Technology, Putian University, Putian, 351100, China
| | - Chih-Cheng Lai
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Tainan Branch, Tainan, Taiwan
| | | | - Li-Chin Lu
- School of Management, Putian University, Putian, 351100, China
| | - Shun-Hsing Hung
- Division of Urology, Department of Surgery, Chi-Mei Hospital, Chia Li, Tainan, Taiwan
| | - Wei-Ting Lin
- Department of Orthopedic, Chi Mei Medical Center, Tainan, 71004, Taiwan
| |
Collapse
|
3
|
Borillo GA, Kagan RM, Marlowe EM. Rapid and Accurate Identification of SARS-CoV-2 Variants Using Real Time PCR Assays. Front Cell Infect Microbiol 2022; 12:894613. [PMID: 35619652 PMCID: PMC9127862 DOI: 10.3389/fcimb.2022.894613] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 12/16/2022] Open
Abstract
Background Genomic surveillance efforts for SARS-CoV-2 are needed to understand the epidemiology of the COVID-19 pandemic. Viral variants may impact routine diagnostic testing, increase viral transmissibility, cause differences in disease severity, have decreased susceptibility to therapeutics, and/or confer the ability to evade host immunity. While viral whole-genome sequencing (WGS) has played a leading role in surveillance programs, many laboratories lack the expertise and resources for performing WGS. This study describes the performance of multiplexed real-time reverse transcription-PCR (RT-PCR) assays for identification of SARS-CoV-2 variants. Methods SARS-CoV-2 specimens were tested for spike-gene variants using a combination of allele-specific primer and allele-specific detection technology (PlexPrime® and PlexZyme®). Targeted detection of spike gene mutations by RT-PCR was compared to variant detection in positive specimens by WGS, including the recently emerged SARS-CoV-2 Omicron variant. Results A total of 398 SAR-CoV-2 RT-PCR positive and 39 negative specimens previously tested by WGS were re-tested by RT-PCR genotyping. PCR detection of spike gene mutations N501Y, E484K, and S982A correlated 100% with WGS for the 29 lineages represented, including Alpha (B.1.1.7), Beta (B.1.351), and Gamma (P.1). Incorporating the P681R spike gene mutation also allowed screening for the SARS-CoV-2 Delta variant (B.1.617.2 and AY sublineages). Further sampling of 664 specimens that were screened by WGS between June and August 2021 and then re-tested by RT-PCR showed strong agreement for Delta variant positivity: 34.5% for WGS vs 32.9% for RT-PCR in June; 100% vs 97.8% in August. In a blinded panel of 16 Omicron and 16 Delta specimens, results of RT-PCR were 100% concordant with WGS results. Conclusions These data demonstrate that multiplexed real-time RT-PCR genotyping has strong agreement with WGS and may provide additional SARS-CoV-2 variant screening capabilities when WGS is unavailable or cost-prohibitive. RT-PCR genotyping assays may also supplement existing sequencing efforts while providing rapid results at or near the time of diagnosis to help guide patient management.
Collapse
|
4
|
Biswas M, Sawajan N, Rungrotmongkol T, Sanachai K, Ershadian M, Sukasem C. Pharmacogenetics and Precision Medicine Approaches for the Improvement of COVID-19 Therapies. Front Pharmacol 2022; 13:835136. [PMID: 35250581 PMCID: PMC8894812 DOI: 10.3389/fphar.2022.835136] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 01/18/2023] Open
Abstract
Many drugs are being administered to tackle coronavirus disease 2019 (COVID-19) pandemic situations without establishing clinical effectiveness or tailoring safety. A repurposing strategy might be more effective and successful if pharmacogenetic interventions are being considered in future clinical studies/trials. Although it is very unlikely that there are almost no pharmacogenetic data for COVID-19 drugs, however, from inferring the pharmacokinetic (PK)/pharmacodynamic(PD) properties and some pharmacogenetic evidence in other diseases/clinical conditions, it is highly likely that pharmacogenetic associations are also feasible in at least some COVID-19 drugs. We strongly mandate to undertake a pharmacogenetic assessment for at least these drug-gene pairs (atazanavir-UGT1A1, ABCB1, SLCO1B1, APOA5; efavirenz-CYP2B6; nevirapine-HLA, CYP2B6, ABCB1; lopinavir-SLCO1B3, ABCC2; ribavirin-SLC28A2; tocilizumab-FCGR3A; ivermectin-ABCB1; oseltamivir-CES1, ABCB1; clopidogrel-CYP2C19, ABCB1, warfarin-CYP2C9, VKORC1; non-steroidal anti-inflammatory drugs (NSAIDs)-CYP2C9) in COVID-19 patients for advancing precision medicine. Molecular docking and computational studies are promising to achieve new therapeutics against SARS-CoV-2 infection. The current situation in the discovery of anti-SARS-CoV-2 agents at four important targets from in silico studies has been described and summarized in this review. Although natural occurring compounds from different herbs against SARS-CoV-2 infection are favorable, however, accurate experimental investigation of these compounds is warranted to provide insightful information. Moreover, clinical considerations of drug-drug interactions (DDIs) and drug-herb interactions (DHIs) of the existing repurposed drugs along with pharmacogenetic (e.g., efavirenz and CYP2B6) and herbogenetic (e.g., andrographolide and CYP2C9) interventions, collectively called multifactorial drug-gene interactions (DGIs), may further accelerate the development of precision COVID-19 therapies in the real-world clinical settings.
Collapse
Affiliation(s)
- Mohitosh Biswas
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | - Nares Sawajan
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Department of Pathology, School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Kamonpan Sanachai
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Maliheh Ershadian
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Pharmacogenomics and Precision Medicine, The Preventive Genomics and Family Check-up Services Center, Bumrungrad International Hospital, Bangkok, Thailand
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
5
|
Wang G, Xiao B, Deng J, Gong L, Li Y, Li J, Zhong Y. The Role of Cytochrome P450 Enzymes in COVID-19 Pathogenesis and Therapy. Front Pharmacol 2022; 13:791922. [PMID: 35185562 PMCID: PMC8847594 DOI: 10.3389/fphar.2022.791922] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has become a new public health crisis threatening the world. Dysregulated immune responses are the most striking pathophysiological features of patients with severe COVID-19, which can result in multiple-organ failure and death. The cytochrome P450 (CYP) system is the most important drug metabolizing enzyme family, which plays a significant role in the metabolism of endogenous or exogenous substances. Endogenous CYPs participate in the biosynthesis or catabolism of endogenous substances, including steroids, vitamins, eicosanoids, and fatty acids, whilst xenobiotic CYPs are associated with the metabolism of environmental toxins, drugs, and carcinogens. CYP expression and activity are greatly affected by immune response. However, changes in CYP expression and/or function in COVID-19 and their impact on COVID-19 pathophysiology and the metabolism of therapeutic agents in COVID-19, remain unclear. In this analysis, we review current evidence predominantly in the following areas: firstly, the possible changes in CYP expression and/or function in COVID-19; secondly, the effects of CYPs on the metabolism of arachidonic acid, vitamins, and steroid hormones in COVID-19; and thirdly, the effects of CYPs on the metabolism of therapeutic COVID-19 drugs.
Collapse
Affiliation(s)
- Guyi Wang
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bing Xiao
- Department of Emergency, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiayi Deng
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Linmei Gong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Li
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinxiu Li
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanjun Zhong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Abdelhadi A, Kassem A. Candida Pneumonia with Lung Abscess as a Complication of Severe COVID-19 Pneumonia. Int Med Case Rep J 2022; 14:853-861. [PMID: 34992473 PMCID: PMC8711636 DOI: 10.2147/imcrj.s342054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/23/2021] [Indexed: 01/08/2023] Open
Abstract
A South Asian male patient in his mid-forties presented with symptoms of severe 2019-nCoV (COVID-19) and recent brain infarction. Subsequently, he was found to have evidence of sepsis, underlying undetected diabetes mellitus (DM) and oral candida mucositis, possibly leading to the rare occurrence of direct spread to the lung, manifesting as a necrotizing candida lung abscess. We describe the diagnosis, clinical course, and management of the unique complication in this case that occurred during his admission, hospitalization, and eventual successful discharge from the hospital. This case highlights the importance of early identification and treatment of suspected COVID-19 infection based on clinical and radiological assessments before the confirmation of COVID-19 by real-time polymerase chain reaction (rtPCR) test result, especially in patients with hyperglycemia. It also indicates the complications that can occur due to COVID-19 such as arteriovenous manifestations and the rare occurrence of pulmonary candida lung abscess. Early detection and prompt management by interdisciplinary teams in the emergency room, followed by close monitoring of complications in the intensive care unit (ICU), can lead to successful outcomes in severe/critical COVID-19 infection.
Collapse
Affiliation(s)
- Adel Abdelhadi
- Department of Critical Care Medicine, Saqr Hospital, MOH, Ras Al-Khaimah, Ras Al-Khaimah, United Arab Emirates
| | - Abeer Kassem
- Department of Pulmonary Medicine, IBHOA Hospital, MOH, Ras Al-Khaimah, Ras Al-Khaimah, United Arab Emirates
| |
Collapse
|