1
|
Eboibi BE, Ogbue MC, Udochukwu EC, Umukoro JE, Okan LO, Agarry SE, Aworanti OA, Ogunkunle O, Laseinde OT. Bio-sorptive remediation of crude oil polluted sea water using plantain ( Musa parasidiaca) leaves as bio-based sorbent: Parametric optimization by Taguchi technique, equilibrium isotherm and kinetic modelling studies. Heliyon 2023; 9:e21413. [PMID: 38027684 PMCID: PMC10665695 DOI: 10.1016/j.heliyon.2023.e21413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
This study investigated the potential of employing plantain leaves as a natural bio-based sorbent for crude oil spill polluted seawater remediation. Type L9(34) Taguchi orthogonal array technique was used to evaluate the effect of four independent bio-sorption factors at three different levels (crude oil initial concentration (X1 7.8, 11.5 and 15.6 g/L), seawater-crude oil temperature (X2 25, 35 and 45 °C), bio-sorbent dosage (X3 1, 2 and 3 g) and bio-sorbent particle size (X4 1.18, 2.36 and 4.72 mm) on two response indices (bio-sorption efficiency (%) and bio-sorption capacity (g/g)). Taguchi optimization technique, numerical-desirability index function optimization technique and a proposed optimization method were utilized to determine the optimum bio-sorption factors needed for the optimum bio-sorption efficiency and bio-sorption capacity. The results demonstrated that the crude oil bio-sorption efficiency of the plantain leaves was significantly influenced by X1, X3 and X4 and the bio-sorption capacity was mainly influenced by X1 and X3. The optimum bio-sorption efficiency and the optimum bio-sorption capacity were 99.05 % and 12.82 g/g, respectively, obtained at optimum combination of factors and levels of X11 (7.8 g/L), X33 (3 g) and X41 (1.18 mm) for bio-sorption efficiency and X13 (15.6 g/L) X31 (1 g) for bio-sorption capacity. The Freundlich and Dubinin-Rudeshkevich isotherm models best explain the equilibrium bio-sorption data, while the pseudo-second order kinetic model best describes the bio-sorption kinetics. The bio-sorptive remediation mechanism followed dual mechanism of physical and chemical bio-sorption and the mass transfer controlled by film diffusion. The maximum bio-sorption capacity (K f ) was 14.0 gg-1.
Collapse
Affiliation(s)
- Blessing E. Eboibi
- Biochemical and Bioenvironmental Engineering Laboratory, Department of Chemical Engineering, Delta State University, Abraka, P. M. B. 22, Oleh Campus, Nigeria
- Department of Chemical Engineering, Federal University, Otuoke, Nigeria
| | - Michael C. Ogbue
- Department of Petroleum Engineering, Delta State University, Abraka, P. M. B. 22, Oleh Campus, Nigeria
| | | | - Judith E. Umukoro
- Biochemical and Bioenvironmental Engineering Laboratory, Department of Chemical Engineering, Delta State University, Abraka, P. M. B. 22, Oleh Campus, Nigeria
| | - Laura O. Okan
- Biochemical and Bioenvironmental Engineering Laboratory, Department of Chemical Engineering, Delta State University, Abraka, P. M. B. 22, Oleh Campus, Nigeria
| | - Samuel E. Agarry
- Department of Chemical Engineering, Federal University, Otuoke, Nigeria
- Biochemical and Bioenvironmental Engineering Research Group, Department of Chemical Engineering, Ladoke Akintola University of Technology, P. M. B. 4000, Ogbomoso, Nigeria
| | - Oluwafunmilayo A. Aworanti
- Biochemical and Bioenvironmental Engineering Research Group, Department of Chemical Engineering, Ladoke Akintola University of Technology, P. M. B. 4000, Ogbomoso, Nigeria
| | - Oyetola Ogunkunle
- Department of Mechanical and Industrial Engineering Technology, University of Johannesburg, South Africa
| | - Opeyeolu T. Laseinde
- Department of Mechanical and Industrial Engineering Technology, University of Johannesburg, South Africa
| |
Collapse
|
2
|
Darla UR, Lataye DH, Kumar A, Pandit B, Ubaidullah M. Adsorption of phenol using adsorbent derived from Saccharum officinarum biomass: optimization, isotherms, kinetics, and thermodynamic study. Sci Rep 2023; 13:18356. [PMID: 37884549 PMCID: PMC10603077 DOI: 10.1038/s41598-023-42461-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/11/2023] [Indexed: 10/28/2023] Open
Abstract
The present research shows the application of Taguchi's design of experiment approach to optimize the process parameters for the removal of phenol onto surface of Saccharum officinarum biomass activated carbon (SBAC) from an aqueous solution to maximize adsorption capacity of SBAC. The effect of adsorption parameters viz. adsorbent dose (m), temperature (T), initial concentration (C0) and mixing time (t) on response characteristics i.e., adsorption capacity (qt) has been studied at three levels by using L9 orthogonal array (OA) which further analyzed by variance analysis (ANOVA) for adsorption data and signal/noise (S/N) ratio data by using 'larger the better' characteristics. Using ANOVA, the optimum parameters are found to be m = 2 g/L, C0 = 150 mg/L, T = 313 K and t = 90 min, resulting in a maximum adsorption capacity of 64.59 mg/g. Adopting ANOVA, the percentage contribution of each process parameter in descending order of sequence is adsorbent dose 59.97% > initial phenol concentration 31.70% > contact time 4.28% > temperature 4.04%. The phenol adsorption onto SBAC was best fitted with the pseudo-second-order kinetic model and follows the Radke-Prausnitz isotherm model. Thermodynamic parameters suggested a spontaneous, exothermic nature and the adsorption process approaches physisorption followed by chemisorption. Hence the application of Taguchi orthogonal array design is a cost-effective and time-efficient approach for carrying out experiments and optimizing procedures for adsorption of phenol and improve the adsorption capacity of SBAC.
Collapse
Affiliation(s)
- Upendra R Darla
- Department of Civil Engineering, Visvesvaraya National Institute of Technology, Nagpur, 440010, India
| | - Dilip H Lataye
- Department of Civil Engineering, Visvesvaraya National Institute of Technology, Nagpur, 440010, India.
| | - Anuj Kumar
- Department of Chemistry, GLA University, Mathura, 281406, India
| | - Bidhan Pandit
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911, Leganés, Madrid, Spain
| | - Mohd Ubaidullah
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Tamang M, Paul KK. Adsorptive treatment of phenol from aqueous solution using chitosan/calcined eggshell adsorbent: Optimization of preparation process using Taguchi statistical analysis. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Tao J, Fu X, Du C, Zhang D. Tea Residue-Based Activated Carbon: Preparation, Characterization and Adsorption Performance of o-Cresol. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04968-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|