1
|
Rohmatullaili R, Ahmad N, Zultriana Z, Savira D, Erviana D, Mohadi R, Lesbani A. High stability and selectivity of butterfly pea flower extract-NiAl LDH-based catalysts in the tetracycline degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33107-33119. [PMID: 38676870 DOI: 10.1007/s11356-024-33445-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Layered double hydroxide (LDH) is an applicable material that can be modified in various ways. Modifications using natural extracts fulfill the principles of "green chemistry." The preparation of butterfly pea flower extract (BPE)-modified NiAl LDH was completed using the calcination and restacking method. The characteristics of the prepared composites were identified through analysis of functional groups, crystal phase, bandgap energy, surface area and surface morphology. Fourier transform-infrared (FT-IR) characterization revealed that the active group of the catalyst is -OH except for NiAl layered double oxide (LDO), which has the metal oxide-like functional groups. X-ray diffraction patterns expressed a typical layered material structure of NiAl LDH dan NiAl LDH-BPE, but not for NiAl LDO and NiAl LDO-BPE. Introducing BPE into NiAl LDH and NiAl LDO effectively decreased the bandgap energy and changed the surface morphology. The prepared catalysts were applied in a batch system with pH 5 to degrade tetracycline (TC). NiAl LDO demonstrated the highest activity as a catalyst in TC degradation, with a 93.61% degradation rate. In contrast, NiAl LDO-BPE demonstrated the highest structural stability in TC degradation and repeated use, with an initial degradation percentage of 82.58% and a fifth regeneration percentage of 71.4%.
Collapse
Affiliation(s)
- Rohmatullaili Rohmatullaili
- Doctoral Program, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Padang Selasa No. 524, Palembang, 30139, Indonesia
- Universitas Islam Negeri Raden Fatah Palembang, Jl. Pangeran Ratu, 5 Ulu, Seberang Ulu I, Palembang, 30252, Indonesia
| | - Nur Ahmad
- Doctoral Program, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Padang Selasa No. 524, Palembang, 30139, Indonesia
- Research Center of Inorganic Materials and Complexes, Universitas Sriwijaya, Jl. Padang Selasa Bukit Besar, Palembang, 30139, Indonesia
| | - Zultriana Zultriana
- Universitas Islam Negeri Raden Fatah Palembang, Jl. Pangeran Ratu, 5 Ulu, Seberang Ulu I, Palembang, 30252, Indonesia
| | - Dila Savira
- Universitas Islam Negeri Raden Fatah Palembang, Jl. Pangeran Ratu, 5 Ulu, Seberang Ulu I, Palembang, 30252, Indonesia
| | - Desti Erviana
- Universitas Islam Negeri Raden Fatah Palembang, Jl. Pangeran Ratu, 5 Ulu, Seberang Ulu I, Palembang, 30252, Indonesia
| | - Risfidian Mohadi
- Doctoral Program, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Padang Selasa No. 524, Palembang, 30139, Indonesia
- Magister of Material Science, Graduate Program, Universitas Sriwijaya, Jl. Padang Selasa No. 524, Palembang, 30139, Indonesia
| | - Aldes Lesbani
- Doctoral Program, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Padang Selasa No. 524, Palembang, 30139, Indonesia.
- Magister of Material Science, Graduate Program, Universitas Sriwijaya, Jl. Padang Selasa No. 524, Palembang, 30139, Indonesia.
- Research Center of Inorganic Materials and Complexes, Universitas Sriwijaya, Jl. Padang Selasa Bukit Besar, Palembang, 30139, Indonesia.
| |
Collapse
|
2
|
Bisaria K, Sinha S, Iqbal HMN, Singh R. Ultrasonication expedited As(III) adsorption onto chitosan impregnated Ni-Fe layered double hydroxide biosorbent: Optimization studies and artificial intelligence modelling. ENVIRONMENTAL RESEARCH 2022; 212:113184. [PMID: 35358544 DOI: 10.1016/j.envres.2022.113184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/08/2023]
Abstract
Chitosan intercalated Ni-Fe layered double hydroxide (Ni-Fe LDH/Ch), prepared by co-precipitation was examined for adsorptive elimination of arsenic (III). Energy Dispersive X-ray analysis, X-ray diffraction, Fourier Transform Infrared spectroscopy, Scanning Electron Microscopy, and Dynamic Light Scattering validated the successful synthesis of the composite with enhanced adsorption sites. Maximal As(III) removal was obtained at adsorbent dose 1 gL-1, pH 7, ultrasonication time 30 min, temperature 298 K, and initial arsenic concentration 50 mgL-1. The experimentally obtained values fit the Langmuir isotherm and pseudo-second-order dynamics well (R2 > 0.98), while thermodynamic evaluation confirmed exothermic and spontaneous reaction (ΔG = -8.13 kJ mol-1). Further, adaptive neuro-fuzzy inference system and artificial neural network successfully predicted As(III) removal percentage with a high correlation coefficient (R2 > 0.94) and low statistical errors (MSE< 0.002, AARE< 0.063). The prepared material successfully brought down arsenic level by 62% in a natural water sample and showed good reusability up to 5 consecutive treatment cycles. The results recommended that Ni-Fe LDH/Ch has ample potential for arsenic remediation, and further investigations can be carried out for large-scale applications.
Collapse
Affiliation(s)
- Kavya Bisaria
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Surbhi Sinha
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
3
|
Chang J, Li M, Du J, Ma M, Xing C, Sun L, Ma P. A Nickel-Containing Polyoxomolybdate as an Efficient Antibacterial Agent for Water Treatment. Int J Mol Sci 2022; 23:ijms23179651. [PMID: 36077048 PMCID: PMC9456081 DOI: 10.3390/ijms23179651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/25/2022] Open
Abstract
In view of the water pollution issues caused by pathogenic microorganisms and harmful organic contaminants, nontoxic, environmentally friendly, and efficient antimicrobial agents are urgently required. Herein, a nickel-based Keggin polyoxomolybdate [Ni(L)(HL)]2H[PMo12O40] 4H2O (1, HL = 2-acetylpyrazine thiosemicarbazone) was prepared via a facile hydrothermal method and successfully characterized. Compound 1 exhibited high stability in a wide range of pH values from 4 to 10. 1 demonstrated significant antibacterial activity, with minimum inhibitory concentration (MIC) values in the range of 0.0019–0.2400 µg/mL against four types of bacteria, including Staphylococcus aureus (S. aureus), Bacillus subtilis (B. subtilis), Escherichia coli (E. coli), and Agrobacterium tumefaciens (A. tumefaciens). Further time-kill studies indicated that 1 killed almost all (99.9%) of E. coli and S. aureus. Meanwhile, the possible antibacterial mechanism was explored, and the results indicate that the antibacterial properties of 1 originate from the synergistic effect between [Ni(L)(HL)]+ and [PMo12O40]3−. In addition, 1 presented effective adsorption of basic fuchsin (BF) dyes. The kinetic data fitted a pseudo-second-order kinetic model well, and the maximum adsorption efficiency for the BF dyes (29.81 mg/g) was determined by the data fit of the Freundlich isotherm model. The results show that BF adsorption was dominated by both chemical adsorption and multilayer adsorption. This work provides evidence that 1 has potential to effectively remove dyes and pathogenic bacteria from wastewater.
Collapse
Affiliation(s)
| | | | | | | | | | - Lin Sun
- Correspondence: (L.S.); (P.M.)
| | | |
Collapse
|
4
|
The Utilization of Mg-Al/Cu as Selective Adsorbent for Cationic Synthetic Dyes. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.4.11043.696-706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mg-Al-LDH is a chemical compound produced through co-precipitation technique and modified with Cu(NO3)2.6H2O to form Mg-Al/Cu. However, the research on the capability of these compounds for adsorbing mixtures of cationic dyes as well as malachite green (MG), methylene blue (MB), and Rodhamine-B (Rh-B) has not been carried out. Therefore, this research aims to determine the performance of Mg-Al-LDH and Mg-Al/Cu for removing cationic dyes. The materials used were characterized by using XRD powder, FT-IR, and N2 adsorption desorption. The Adsorption process was conducted by batch system and several effects were investigated, such as kinetic parameter, isotherm, and the temperature condition. The stability feature of Mg-Al-LDH and Mg-Al/Cu was obtained from the regeneration process in the five cycles. The results presented that Mg-Al/Cu was effectively produced, which was indicated by the formation of layer at 10.792° (003), 22.94° (006), 35.53° (112), 55.78° (110), and 56.59° (116). Mg-Al-LDH and Mg-Al/Cu were found to adsorbed MG than the other cationic dyes with adsorption capacity of 68.996 mg/g and 104.167 mg/g, respectively. The unique properties of Mg-Al/Cu includes, structural stability towards the reuse of adsorbent subsequently for five times, without significant decrease of adsorption capacity. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
5
|
D’Cruz B, Amin MO, Al-Hetlani E. Polyoxometalate-Based Materials for the Removal of Contaminants from Wastewater: A Review. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Bessy D’Cruz
- Department of Chemistry, Faculty of Science, Kuwait University, 13060 Safat, Kuwait
| | - Mohamed O. Amin
- Department of Chemistry, Faculty of Science, Kuwait University, 13060 Safat, Kuwait
| | - Entesar Al-Hetlani
- Department of Chemistry, Faculty of Science, Kuwait University, 13060 Safat, Kuwait
| |
Collapse
|
6
|
Preparation of Ca/Al-Layered Double Hydroxides/Biochar Composite with High Adsorption Capacity and Selectivity toward Cationic Dyes in Aqueous. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.2.10211.244-252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Widely reports have evaluated the use of biochar (BC) composites to layered double hydroxide (LDH) to adsorb dyes from wastewater. However, its applicability for adsorbing a mixture of cationic dyes such as Malachite green (MG), Rodhamine-B (Rh-B), and Methylene blue (MB), which causes carcinogenic and mutagenic effects on aquatic life, has not been studied. In this work, we compared the performance of CaAl-LDH/BC adsorbent with or without the addition of BC in the adsorption of cationic dyes. The adsorption study was prepared in a batch system using various temperatures, concentrations, and also contact time. The results of the characterization of Ca/Al-Biochar composite showed the unique diffraction of XRD pattern, and also showed two characteristics of starting materials. Surface area analysis by BET method showed Ca/Al-Biochar composite has a higher surface area than starting material. The results of the adsorption study of MG showed that Ca/Al-Biochar follows the pseudo-second-order kinetic model. The adsorption capacity of MG on Ca/Al-Biochar was up to 71.429 mg/g and shows selectivity toward MG in an aqueous solution. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
7
|
Mg-Al/Biochar Composite with Stable Structure for Malachite Green Adsorption from Aqueous Solutions. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.1.10270.149-160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mg-Al-layered double hydroxide (LDH) was fabricated using a coprecipitation method at pH 10. Thereafter, Mg-Al-LDH was impregnated with biochar to manufacture a Mg-Al/Biochar composite. The composite was characterized using powder X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, N2 adsorption—desorption, thermogravimetry-differential thermal analysis (TG-DTA), and scanning electron microscopy (SEM) experiments, and was subsequently used for malachite green (MG) adsorption. MG adsorption experiments were performed in a batch system, and the effects of temperature and adsorption kinetic and isotherm parameters on the adsorption process were analyzed. The stability of Mg-Al/Biochar was evaluated using regeneration experiments over three cycles. The peaks at 11.47° (003), 22.86° (002), 34.69° (012), and 61.62° (116), in the XRD profile of Mg-Al/Biochar suggested that Mg-Al/Biochar was successfully fabricated. The surface area of Mg-Al/Biochar was up to five times larger than that of pristine Mg-Al-LDH. The adsorption of MG on Mg-Al/Biochar was dominated by interactions at the surface of the adsorbent and was classified as physical adsorption; moreover the maximum adsorption capacity ofMg-Al/Biochar was 70.922 mg/g. Furthermore, the MG removal of Mg-Al/Biochar during three successive adsorption cycles (i.e. 66.73%, 65.57%, and 65.77% for the first, second, and third adsorption cycle) did not change significantly, which indicated the stable structure of the adsorbent. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
8
|
Palapa NR, Taher T, Mohadi R, Rachmat A, Mardiyanto M, Miksusanti M, Lesbani A. NiAl-layered double hydroxide intercalated with Keggin polyoxometalate as adsorbent of malachite green: kinetic and equilibrium studies. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2021.1895773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- N. R. Palapa
- Graduate School of Mathematics and Natural Sciences Faculty, Sriwijaya University, Ogan Ilir, South Sumatra, Indonesia
| | - T. Taher
- Department of Environmental Engineering, Institut Teknologi Sumatera, Jalan Terusan Ryacudu, Way Hui, Kecamatan Jati Agung, Lampung Selatan 35365
| | - R. Mohadi
- Research Center of Inorganic Materials and Coordination Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Ogan Ilir, Indonesia
| | - A. Rachmat
- Graduate School of Mathematics and Natural Sciences Faculty, Sriwijaya University, Ogan Ilir, South Sumatra, Indonesia
| | - M. Mardiyanto
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Ogan Ilir, South Sumatra, Indonesia
| | - M. Miksusanti
- Graduate School of Mathematics and Natural Sciences Faculty, Sriwijaya University, Ogan Ilir, South Sumatra, Indonesia
| | - A. Lesbani
- Graduate School of Mathematics and Natural Sciences Faculty, Sriwijaya University, Ogan Ilir, South Sumatra, Indonesia
- Research Center of Inorganic Materials and Coordination Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Ogan Ilir, Indonesia
| |
Collapse
|
9
|
Unique Adsorption Properties of Malachite Green on Interlayer Space of Cu-Al and Cu-Al-SiW12O40 Layered Double Hydroxides. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2020. [DOI: 10.9767/bcrec.15.3.8371.653-661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cu-Al layered double hydroxide (LDH) was intercalated with Keggin ion of polyoxometalate K4[a-SiW12O40] to form Cu-Al-SiW12O40 LDH. The obtained materials were analyzed by X-ray Diffraction (XRD), Fourier Transform Infra Red (FTIR) spectroscopy, and Brunaur-Emmett-Teller (BET) surface area analysis. Furthermore, the materials were used as adsorbents of malachite green from aqueous solution. Some variables for adsorption, such as: effect of adsorption times, malachite green concentration, and also adsorption temperature, were explored. The results showed that diffraction at 11.72° on Cu-Al LDH has interlayer distance of 7.56 Å. The intercalation of that LDH with [a-SiW12O40]4− ion resulted increasing interlayer distance to 12.10 Å. The surface area of material was also increased after intercalation from 46.2 m2/g to 89.02 m2/g. The adsorption of malachite green on Cu-Al and Cu-Al-SiW12O40 LDHs followed pseudo second order kinetic and isotherm Langmuir model with adsorption capacity of Cu-Al and Cu-Al-SiW12O40 LDHs was 55.866 mg/g and 149.253 mg/g, respectively. That adsorption capacity is equal with increasing interlayer space and surface area properties of material after intercalation. Thus, the adsorption of malachite green on Cu-Al and Cu-Al-SiW12O40 LDHs is unique and dominantly occurred on interlayer space of LDH as active site adsorption. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|