Majumdar S, Ray PP, Sahu R, Dey A, Dey B. Strategic fabrication of efficient photo-responsive semiconductor electronic diode-devices by Bovine Serum Albumin protein-based Cu(II)-metallohydrogel scaffolds.
Int J Biol Macromol 2022;
195:287-293. [PMID:
34896152 DOI:
10.1016/j.ijbiomac.2021.12.001]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/17/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022]
Abstract
Bovine Serum Albumin protein-based two fascinating functional self-healing Cu(II) metallohydrogel scaffolds (MD1 and MD2) have been studied for the development of metal-semiconductor junction based Schottky diode device. Multiple metal-semiconductor (MS) junction devices, offering the sandwich-like configuration of Indium tin oxide (ITO)/ metallogel/Aluminium (Al), have been made-up to investigate the electrical properties of the synthesized metallohydrogel materials. Optical characterizations including optical band gap measurement have been carried out using Tauc's equation for both the metallohydrogels. The current-voltage (I-V) characteristics of just made-up devices are studied under irradiation and non- irradiation conditions to explore the electrical features through investigating the charge transport phenomenon. The electrical conductivity gets estimated as 3.13 × 10-5 S.m-1 and 2.69 × 10-5 S.m-1 for MD1 and MD2 under dark condition, and 11.06 × 10-5 S.m-1 and 5.99 × 10-5 S.m-1 for MD1 and MD2, respectively, in photo-irradiation. The measured optical and electrical properties of MD1 and MD2 metallohydrogels are thoroughly investigated and the data indicates that MD1 and MD2 metallohyrogels are semiconducting in nature with excellent photo-responsive behaviour. Moreover, the representative I - V characteristic of the MD1 and MD2 metallohydrogels at both irradiation and non-irradiation conditions represents the nonlinear rectifying behaviour, a typical signature for Schottky diode (SD).
Collapse