1
|
Hashemzaei M, Tabrizian K, Alizadeh Z, Pasandideh S, Rezaee R, Mamoulakis C, Tsatsakis A, Skaperda Z, Kouretas D, Shahraki J. Resveratrol, curcumin and gallic acid attenuate glyoxal-induced damage to rat renal cells. Toxicol Rep 2020; 7:1571-1577. [PMID: 33304826 PMCID: PMC7708762 DOI: 10.1016/j.toxrep.2020.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
RES, CUR and GA protected renal cells from GO–induced cells death. RES, CUR and GA reduced formation of ROS. RES, CUR and GA diminished lipid peroxidation products. RES, CUR and GA repressed GO-induced mitochondrial membrane potential collapse. RES, CUR and GA decreased lysosomal membrane leakage in GO-treated cells.
Glyoxal (GO), a by-product of glucose auto-oxidation, is involved in the glycation of proteins/ lipids and formation of advanced glycation (AGE) and lipoxidation (ALE) end products. AGE/ALE were shown to contribute to diabetic complications development/progression such as nephropathy. Diabetic nephropathy progression has an oxidative nature. Given the antioxidant effects of polyphenols, potential protective effects of resveratrol, curcumin and gallic acid, in rat renal cells treated with GO, were evaluated in the present work. According to our results, incubation of GO with the cells reduced their viability and led to membrane lysis, reactive oxygen species (ROS) formation, lipid peroxidation, mitochondrial membrane potential collapse, and lysosomal membrane leakage. These findings were prevented by pre-treatment with resveratrol, curcumin and gallic acid. Mitochondrial and lysosomal toxic interactions appear to worsen oxidative stress/cytotoxicity produced by GO. Resveratrol, curcumin and gallic acid inhibited ROS formation and attenuated GO-induced renal cell death.
Collapse
Affiliation(s)
- Mahmoud Hashemzaei
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran.,Toxicology and Addiction Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Kaveh Tabrizian
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran.,Toxicology and Addiction Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Zeinab Alizadeh
- Toxicology and Addiction Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Sedigheh Pasandideh
- Toxicology and Addiction Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, Crete, Greece
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion, 71003, Greece
| | - Zoi Skaperda
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, 41500, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, 41500, Greece
| | - Jafar Shahraki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran.,Toxicology and Addiction Research Center, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|