1
|
Li Y, Frandsen KM, Guo W, Lu Y, Hvelplund MH, Suolang B, Xi Z, Duan M, Liu L. Impact of altitude on the dosage of indoor particulates entering an individual's small airways. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133856. [PMID: 38394896 DOI: 10.1016/j.jhazmat.2024.133856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
The complexity of indoor particulate exposure intensifies at higher altitudes owing to the increased lung capacity that residents develop to meet the higher oxygen demands. Altitude variations impact atmospheric pressure and alter particulate dynamics in ambient air and the human respiratory tract, complicating particulate inhalation. This study assessed the fraction of PM2.5 and PM10 entering small airways. This assessment covered an altitude range from 400 m above sea level to 3650 m, and an in vitro respiratory tract model was used. The experimental results confirmed that with increasing altitude, the penetration fractions of PM2.5 and PM10 significantly increased from 0.133 ± 0.031 and 0.141 ± 0.045 to 0.404 ± 0.159 and 0.353 ± 0.132, respectively. Additionally, the computational fluid dynamics simulation results revealed that among particles with sizes of 0.1 to 10 µm, the 7.5-μm particles exhibited the most substantial reduction in deposition in the upper airway, displaying a decrease of 6.27%. Our findings underscore the health risks faced by low-altitude residents during acclimatization to higher altitudes, as they experience heightened exposure to particulate matter sources.
Collapse
Affiliation(s)
- Yifan Li
- Department of Building Science, Tsinghua University, Beijing 100084, China; Laboratory of Eco-Planning & Green Building, Ministry of Education, Tsinghua University, Beijing 100084, China
| | | | - Weiqi Guo
- Department of Building Science, Tsinghua University, Beijing 100084, China; Laboratory of Eco-Planning & Green Building, Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yiran Lu
- Department of Building Science, Tsinghua University, Beijing 100084, China; Laboratory of Eco-Planning & Green Building, Ministry of Education, Tsinghua University, Beijing 100084, China
| | | | - Baimu Suolang
- School of Engineering, Tibet University, Lhasa, Tibet 850000, China
| | - Ziang Xi
- Department of Building Science, Tsinghua University, Beijing 100084, China; Laboratory of Eco-Planning & Green Building, Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Mengjie Duan
- Laboratory of Eco-Planning & Green Building, Ministry of Education, Tsinghua University, Beijing 100084, China; Vanke School of Public Health, Tsinghua University, Beijing 100084, China.
| | - Li Liu
- Department of Building Science, Tsinghua University, Beijing 100084, China; Laboratory of Eco-Planning & Green Building, Ministry of Education, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Inthavong K. Message from the Guest Editor of the SCONA 2022 Meeting Special Issue. EXPERIMENTAL AND COMPUTATIONAL MULTIPHASE FLOW 2023; 5:233-234. [PMID: 37324182 PMCID: PMC10250167 DOI: 10.1007/s42757-022-0147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Kiao Inthavong
- School of Engineering, RMIT University, Melbourne, VIC 3001 Australia
| |
Collapse
|