1
|
Zhai T, Wang H, Dong X, Wang S, Xin X, Du J, Guan Q, Jiao H, Yang W, Dong R. Laccase: A Green Biocatalyst Offers Immense Potential for Food Industrial and Biotechnological Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24158-24169. [PMID: 39436678 DOI: 10.1021/acs.jafc.4c06669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Laccase, a multipurpose biocatalyst, is widely distributed across all kingdoms of life and plays a key role in essential biological processes such as lignin synthesis, degradation, and pigment formation. These functions are critical for fungal growth, plant-pathogen interactions, and maintenance of soil health. Due to its broad substrate specificity, multifunctional nature, and environmentally friendly characteristics, laccase is widely employed as a catalyst in various green chemistry initiatives. With its ability to oxidize a diverse range of phenolic and nonphenolic compounds, laccase has also been found to be useful as a food additive and for assessing food quality parameters. Ongoing advancements in research and technology are continually expanding the recognition of laccase's potential to address global environmental, health, and energy challenges. This review aims to provide critical insights into the applications of laccases in the biotechnology and food industry.
Collapse
Affiliation(s)
- Tingting Zhai
- Shandong Institute of Pomology, Tai'an, Shandong 271000, People's Republic of China
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Hongwei Wang
- Shandong Institute of Pomology, Tai'an, Shandong 271000, People's Republic of China
| | - Xiaomin Dong
- Shandong Institute of Pomology, Tai'an, Shandong 271000, People's Republic of China
| | - Shu Wang
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Xin Xin
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Jianfeng Du
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan 453003, People's Republic of China
| | - Qiuzhu Guan
- Shandong Institute of Pomology, Tai'an, Shandong 271000, People's Republic of China
| | - Huijun Jiao
- Shandong Institute of Pomology, Tai'an, Shandong 271000, People's Republic of China
| | - Wei Yang
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Ran Dong
- Shandong Institute of Pomology, Tai'an, Shandong 271000, People's Republic of China
| |
Collapse
|
2
|
Cruz IDA, Cruz-Magalhães V, Loguercio LL, Dos Santos LBPR, Uetanabaro APT, Costa AMD. A systematic study on the characteristics and applications of laccases produced by fungi: insights on their potential for biotechnologies. Prep Biochem Biotechnol 2024; 54:896-909. [PMID: 38170449 DOI: 10.1080/10826068.2023.2297697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Laccases are polyphenol oxidase enzymes and form the enzyme complex known for their role in wood decomposition and lignin degradation. The present study aimed to systematically review the state-of-the-art trends in scientific publications on laccase enzymes of the last 10 years. The main aspects checked included the laccase-producing fungal genera, the conditions of fungal growth and laccase production, the methods of immobilization, and potential applications of laccase. After applying the systematic search method 177 articles were selected to compound the final database. Although various fungi produce laccase, most studies were Trametes and Pleurotus genera. The submerged fermentation (SmF) has been the most used, however, the use of solid-state fermentation (SSF) appeared as a promising technique to produce laccase when using agro-industrial residues as substrates. Studies on laccase immobilization showed the covalent bonding and entrapment methods were the most used, showing greater efficiency of immobilization and a high number of enzyme reuses. The main use of the laccase was in bioremediation, especially in the discoloration of dyes from the textile industry and the degradation of pharmaceutical waste. Implications and consequences of all these findings in biotechnology and environment, as well as the trends and gaps of laccase research were discussed.
Collapse
Affiliation(s)
- Ian David Araújo Cruz
- Departamento de Ciências Biológicas, UESC - Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | | | - Leandro Lopes Loguercio
- Departamento de Ciências Biológicas, UESC - Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | | | | | - Andréa Miura da Costa
- Departamento de Ciências Biológicas, UESC - Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| |
Collapse
|
3
|
Filho JRDS, Santos ÉDS, Linde GA, Colauto NB, Gonçalves RAC, de Oliveira AJB. Lentinus crinitus: Traditional use, phytochemical and pharmacological activities, and industrial and biotechnological applications. Food Res Int 2023; 172:113179. [PMID: 37689932 DOI: 10.1016/j.foodres.2023.113179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 09/11/2023]
Abstract
The saprophytic basidiomycete Lentinus crinitus (L.) Fr is a Brazilian native fungus with pantropical occurrence. L. crinitus produces edible fruiting bodies with medicinal, nutritional, and biotechnological applications. The compounds from fungal fruiting bodies can be applied to the preparation of products in the food, cosmetic, biomedical, and pharmaceutical industries. Our aim was to review the literature on L. crinitus concerning its botanical description, geographical distribution, phytochemistry, pharmacological properties, nutritional value, and biotechnology potential (in vitro cultivation and enzyme production). Scientific search engines, including ScienceDirect, CAPES Journals Portal, Google Scholar, PubMed, SciELO, MEDLINE, LILACS, and SciFinder, were consulted to gather data on L. crinitus. The present review is an up-to-date and comprehensive analysis of the phytochemical compounds, phytopharmacological activities, and biotechnological value of L. crinitus. Extracts from L. crinitus have been reported to exhibit numerous in vitro pharmacological activities such as antioxidant, antifungal, antibacterial, antiviral, and anticancer. The substances in these extracts belong to different classes of chemical compounds such as polysaccharides, fatty acids, terpenes, phenolic acids, and flavonoids. Reviews on Brazilian native fungi are of great importance for scientific knowledge, with great applicability as a mirror for species of the same family. The ethnobotanical, phytochemical, pharmacological, ethnomedicinal, and biotechnological properties of L. crinitus highlighted in this review provide information for future studies and commercial exploitation, and reveal that this fungus has enormous potential for pharmaceutical, nutraceutical, biotechnological, and ecological applications.
Collapse
Affiliation(s)
- José Rivaldo Dos Santos Filho
- Graduate Program in Pharmaceutical Sciences - Department of Pharmacy, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | - Éverton da Silva Santos
- Graduate Program in Pharmaceutical Sciences - Department of Pharmacy, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | - Giani Andrea Linde
- Graduate Program in Food, Nutrition, and Health - School of Nutrition, Federal University of Bahia, Canela Campus, Salvador 40110-907, Bahia, Brazil
| | - Nelson Barros Colauto
- Graduate Program in Food Science - Faculty of Pharmacy, Federal University of Bahia, Salvador 40110-115, Bahia, Brazil
| | | | - Arildo José Braz de Oliveira
- Graduate Program in Pharmaceutical Sciences - Department of Pharmacy, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| |
Collapse
|
4
|
Biosorption of methylene blue by residue from Lentinus crinitus mushroom cultivation. World J Microbiol Biotechnol 2023; 39:110. [PMID: 36905533 DOI: 10.1007/s11274-023-03562-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Conventional textile effluent treatments cannot remove methylene blue, a mutagenic azo dye, and an endocrine disruptor, that remains in the drinking water after conventional water treatment. However, the spent substrate from Lentinus crinitus mushroom cultivation, a waste, could be an attractive alternative to remove persistent azo dyes in water. The objective of this study was to assess the methylene blue biosorption by spent substrate from L. crinitus mushroom cultivation. The spent substrate obtained after mushroom cultivation had been characterized by the point of zero charge, functional groups, thermogravimetric analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy. Moreover, the spent substrate biosorption capacity was determined in function of pH, time, and temperature. The spent substrate had a point of zero charge value of 4.3 and biosorbed 99% of methylene blue in pH from 3 to 9, with the highest biosorption in the kinetic assay of 15.92 mg g- 1, and in the isothermal assay of 120.31 mg g- 1. Biosorption reached equilibrium at 40 min after mixing and best fitted the pseudo-second-order model. Freundlich model best fitted the isothermal parameters and each 100 g spent substrate biosorbed 12 g dye in an aqueous solution. The spent substrate of L. crinitus cultivation is an effective biosorbent of methylene blue and an alternative to removing this dye from water, adding value to the mushroom production chain, and supporting the circular economy.
Collapse
|
5
|
Light conditions affect the growth, chemical composition, antioxidant and antimicrobial activities of the white-rot fungus Lentinus crinitus mycelial biomass. Photochem Photobiol Sci 2022; 22:669-686. [PMID: 36417143 DOI: 10.1007/s43630-022-00344-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022]
Abstract
The mycelial biomass of basidiomycetes is a promising source of compounds and represents an alternative for industrial and biotechnological applications. Fungi use light as information and hold photoresponse mechanisms, in which sensors respond to light wavelengths and regulate various biological processes. Therefore, this study aimed to investigate the effects of blue, green, and red lights on the growth, chemical composition, and antioxidant and antimicrobial activity of Lentinus crinitus mycelial biomass. The chemical composition of the mycelial biomass was determined by chromatographic methods, antioxidant activity was analyzed by in vitro assays, and antimicrobial activity was investigated by the microdilution assay. The highest mycelial biomass yield was observed under blue-light cultivation. Many primordia arose under blue or green light, whereas the stroma was formed under red light. The presence of light altered the primary fungal metabolism, increasing the carbohydrate, tocopherol, fatty acid, and soluble sugar contents, mostly mannitol, and reducing the protein and organic acid concentrations. Cultivation under red light increased the phenol concentration. In contrast, cultivation under blue and green lights decreased phenol concentration. Benzoic and gallic acids were the main phenolic acids in the hydroalcoholic extracts, and the latter acids increased in all cultures under light, especially red light. Mycelial biomass cultivated under red light showed the highest antioxidant activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The ferric reducing antioxidant power (FRAP) method showed that all light wavelengths increased the antioxidant activity of mycelial biomass, with the highest value under red light. Moreover, the β-carotene/linoleic acid co-oxidation (BCLA) assay demonstrated that the antioxidant activity was affected by light cultivation. Mycelial biomass grown under all conditions exhibited antibacterial and antifungal activities. Thus, mycelial biomass cultivation of L. crinitus under light conditions may be a promising strategy for controlling the mycelial chemical composition and biomass yield.
Collapse
|
6
|
Bertéli MBD, Pinheiro CR, Philadelpho BO, Otero DM, Ribeiro CDF, de Souza CO, de Souza Ferreira E, Ruiz SP, do Valle JS, Linde GA, Colauto NB. Long-term cryopreservation of Lentinus crinitus strains by wheat grain technique. J Microbiol Methods 2022; 198:106491. [PMID: 35588992 DOI: 10.1016/j.mimet.2022.106491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 12/27/2022]
Abstract
Lentinus crinitus (Basidiomycota: Polyporales) is a saprophytic fungus with biotechnological importance described more than 20 years ago. However, there are few studies on the long-term preservation of this basidiomycete. Cryopreservation is a long-term storage technique that reduces the metabolic activity of microorganisms, but its success depends on the adjustment of the freezing process, the cryoprotectants, and the protective substrates for each species. This study aimed to assess the mycelial viability and genetic stability of L. crinitus strains cryopreserved at -86 °C for two years by the wheat grain technique using different cryoprotectants and freezing methods. Three strains of L. crinitus (U9-1, U13-5, and U15-12) were subjected to different concentrations and types of cryoprotectants (dimethyl sulfoxide, glycerol, glucose, and sucrose), freezing methods such as immediate freezing from 25 to -86 °C and progressing freezing from 25 to -86 °C in a freezing container with isopropyl alcohol to control the rate of cell freezing at -1 °C min-1, protective substrate (wheat grain and 2% malt extract agar), and cryopreservation period (1, 6, 12, and 24 months). After thawing, samples were evaluated for mycelial viability, time to mycelial recovery, mycelial stability, and genetic stability of the fungus. All techniques achieved effective cryopreservation at -86 °C, mainly with the wheat grain technique. All cryoprotectants (3.5% glycerol, 1.5% dimethyl sulfoxide, 25% sucrose, and 5% glucose), freezing methods (immediate and gradual), and protective substrate (wheat grain and malt extract agar) were effective for cryopreservation of the three L. crinitus strains in an ultra-low temperature freezer for two years. Mycelial viability, mycelial stability, and genetic stability of the fungus were not affected after two-year cryopreservation, evidencing the robustness of the long-term cryopreservation technique and the fungus.
Collapse
|
7
|
Yanto DHY, Guntoro MA, Nurhayat OD, Anita SH, Oktaviani M, Ramadhan KP, Pradipta MF, Watanabe T. Biodegradation and biodetoxification of batik dye wastewater by laccase from Trametes hirsuta EDN 082 immobilised on light expanded clay aggregate. 3 Biotech 2021; 11:247. [PMID: 33968590 DOI: 10.1007/s13205-021-02806-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 04/21/2021] [Indexed: 01/15/2023] Open
Abstract
The biodegradation and biodetoxification of batik industrial wastewater by laccase enzyme immobilised on light expanded clay aggregate (LECA) were investigated. Laccase from Trametes hirsuta EDN 082 was covalently immobilised by modifying the LECA surface using (3-aminopropyl)trimethoxysilane and glutaraldehyde. The enzymatic characterisation of LECA-laccase showed promising results with an enzyme loading of 6.67 U/g and an immobilisation yield of 66.7% at the initial laccase activity of 10 U/g LECA. LECA-laccase successfully degraded batik industrial wastewater containing indigosol dye up to 98.2%. In addition, the decolorisation extent was more than 95.4% after four cycles. The phytotoxicity assessment of Vigna radiata and the microbial toxicity of two pathogenic bacteria, Bacillus subtilis and Pseudomonas aeruginosa, showed biodetoxification of treated batik dye wastewater. The characterisation using 3D light microscopy, scanning electron microscopy and Fourier transform infrared for LECA-laccase confirmed that laccase was successfully immobilised on LECA, and the decolorisation achieved through the combination of adsorption and enzymatic degradation. This study offers an environmentally friendly, effective and affordable LECA-laccase as a method for batik dye wastewater treatment. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02806-8.
Collapse
Affiliation(s)
- Dede Heri Yuli Yanto
- Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Jl. Raya Bogor Km. 46, Cibinong, Bogor 16911 Indonesia
| | - Maria Andriani Guntoro
- Department of Chemistry, Gajah Mada University (UGM), Jl. Bulaksumur, Caturtunggal, Yogyakarta 55281 Indonesia
| | - Oktan Dwi Nurhayat
- Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Jl. Raya Bogor Km. 46, Cibinong, Bogor 16911 Indonesia
| | - Sita Heris Anita
- Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Jl. Raya Bogor Km. 46, Cibinong, Bogor 16911 Indonesia
| | - Maulida Oktaviani
- Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Jl. Raya Bogor Km. 46, Cibinong, Bogor 16911 Indonesia
| | - Kharisma Panji Ramadhan
- Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Jl. Raya Bogor Km. 46, Cibinong, Bogor 16911 Indonesia
| | - Mokhammad Fajar Pradipta
- Department of Chemistry, Gajah Mada University (UGM), Jl. Bulaksumur, Caturtunggal, Yogyakarta 55281 Indonesia
| | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, 611-0011 Japan
| |
Collapse
|
8
|
Lentinus crinitus basidiocarp stipe and pileus: chemical composition, cytotoxicity and antioxidant activity. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03713-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Bertéli MBD, Barros L, Reis FS, Ferreira ICFR, Glamočlija J, Soković M, Valle JSD, Linde GA, Ruiz SP, Colauto NB. Antimicrobial activity, chemical composition and cytotoxicity of Lentinus crinitus basidiocarp. Food Funct 2021; 12:6780-6792. [PMID: 34109332 DOI: 10.1039/d1fo00656h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lentinus crinitus (L.) Fr. (Basidiomycota: Polyporales) is a wild mushroom with several biotechnological applications; however, there are few studies on its chemical composition and antimicrobial activity. Therefore, this study aims to evaluate the chemical composition, cytotoxicity, and antimicrobial activity of L. crinitus basidiocarp. For that, its nutritional value (AOAC procedures) and its composition in some hydrophilic and lipophilic compounds (chromatographic techniques) were assessed. Moreover, the potential hepatotoxic effects were evaluated using a primary cell culture obtained from porcine liver, and its growth inhibitory capacity was also evaluated against four human tumour cell lines (spectrophotometric assays). The antimicrobial activity was evaluated by microdilution against eight bacteria and fungi. The basidiocarp has a high content of carbohydrates and, therefore, a relatively high energetic value. It is also rich in soluble sugars, β-tocopherol, phenolic acids, mainly p-hydroxybenzoic acid, and organic acids, mainly malic acid. L. crinitus did not show cytotoxicity in non-tumour cells, but it did not inhibit the growth of human tumour cell lines either. The basidiocarp has a wide antimicrobial activity, inhibiting the growth of different species of bacteria and fungi. It showed minimum bactericidal and fungicidal concentration values similar to or lower than those verified by commercial antibiotics or food additives used as preservatives. The antimicrobial activity was more evident against Listeria monocytogenes, Salmonella enterica, and Penicillium ochrochloron, followed by Aspergillus ochraceus and Trichoderma viride, when compared to the controls. The results obtained in this study showed that L. crinitus basidiocarp has great potential to be used by the industry without toxicity risks.
Collapse
|