1
|
Hutchins C, Sayavedra L, Diaz M, Gupta P, Tissingh E, Elumogo C, Nolan J, Charles I, Elumogo N, Narbad A. Genomic analysis of a rare recurrent Listeria monocytogenes prosthetic joint infection indicates a protected niche within biofilm on prosthetic materials. Sci Rep 2021; 11:21864. [PMID: 34750463 PMCID: PMC8575960 DOI: 10.1038/s41598-021-01376-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022] Open
Abstract
Listeria monocytogenes is a rare cause of prosthetic joint infections (PJI). In this study, we describe a case of recurrent L. monocytogenes infections, 39 months apart, following debridement and retention of a prosthetic hip. Despite numerous studies reporting persistent L. monocytogenes in human infections, the genomic and phenotypic changes that clinically relevant strains undergo in the host are poorly understood. Improved knowledge of how PJI occurs is needed to improve the management of prosthetic infections. We used a combination of long- and short-read sequencing to identify any potential genomic differences between two L. monocytogenes isolates that occurred over 39-month incubation in the host. The isolates, QI0054 and QI0055, showed three single nucleotide polymorphisms and three insertions or deletions, suggesting that the recurrent infection was caused by the same strain. To identify potential differences in the capacity for persistence of these isolates, their biofilm-forming ability and potential to colonize prosthesis-relevant materials was investigated both in microtitre plates and on prosthetic material titanium, stainless steel 316 and ultra-high molecular weight polyethylene. Whilst the L. monocytogenes isolate from the most recent infection (QI0055) was able to form higher biofilm in microtitre plates, this did not lead to an increase in biomass on prosthetic joint materials compared to the initial isolate (QI0054). Both clinical isolates were able to form significantly more biofilm on the two metal prosthetic materials than on the ultra-high molecular weight polyethylene, in contrast to reference strain Scott A. Transcriptomics revealed 41 genes overexpressed in biofilm state and 643 in planktonic state. Moreover, genes with mutations were actively expressed in both isolates. We conclude the isolates are derived from the same strain and hypothesize that L. monocytogenes formed biofilm on the prosthetic joint materials, with minimal exposure to stresses, which permitted their survival and growth.
Collapse
Affiliation(s)
- Chloe Hutchins
- Gut Health and Microbes, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
| | - Lizbeth Sayavedra
- Gut Health and Microbes, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
| | - Maria Diaz
- Gut Health and Microbes, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.,Microbes in the Food Chain, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Puja Gupta
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Elizabeth Tissingh
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Chiamaka Elumogo
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - John Nolan
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Ian Charles
- Gut Health and Microbes, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.,University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Ngozi Elumogo
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Arjan Narbad
- Gut Health and Microbes, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| |
Collapse
|
2
|
Béal C, Zeller V, Kerroumi Y, Meyssonnier V, Heym B, Chazerain P, Marmor S. Successive new-pathogen prosthetic joint reinfections: Observational cohort study on 61 patients. Joint Bone Spine 2021; 89:105254. [PMID: 34325049 DOI: 10.1016/j.jbspin.2021.105254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES s (PJI) treatment failure may be due to relapsing infection (same microorganism) or new-pathogen reinfection (npPJI). The aim was to describe npPJI epidemiological, clinical and microbiological characteristics, their treatments and outcomes, and identify their risk factors. METHODS This observational, single-center, cohort study was conducted in a French Referral Center for Bone-and-Joint Infections between September 2004 and December 2015. Patients treated for at least two successive hip or knee PJIs in the same joint with a different pathogen were identified in the prospective database. We compared each patient's first PJI and subsequent npPJI(s) to analyze the type and microbiological characteristics of npPJIs. To search for npPJI risk factors, we compared those cases to a random selection of 122 "unique-episode" PJIs treated during the study period. RESULTS Among 990 PJIs, 79 (8%) npPJIs occurring in 61 patients were included. New-pathogen prosthetic joint infections (npPJIs) s developed more frequently in knee (14%) than hip prostheses (5%). Median interval from the first PJI to the npPJI was 26 months. New-pathogen prosthetic joint infections (npPJIs) s more frequently spread hematogenously (60% vs 33%) and were predominantly caused by Staphylococcus (36%) or Streptococcus (33%) species. Multivariate analysis identified two risk factors: chronic dermatitis (odds ratio: 6.23; P<0.05) and cardiovascular diseases (odds ratio: 2.71; P<0.01). A curative strategy was applied to 70%: DAIR (29%), one-stage (28%), two-stage exchange arthroplasty (7%) or other strategies (7%). The others received prolonged suppressive antibiotic therapy (29%). CONCLUSIONS New-pathogen prosthetic joint infections (npPJIs) s are complex infections requiring management by multidisciplinary teams that should be adapted to each clinical situation.
Collapse
Affiliation(s)
- Caroline Béal
- Service de Rhumatologie, Groupe Hospitalier Diaconesses-Croix Saint-Simon, 125, rue d'Avron, 75020 Paris, France
| | - Valérie Zeller
- Centre de Référence des Infections Ostéo-Articulaires Complexes, Groupe Hospitalier Diaconesses-Croix Saint-Simon, 125, rue d'Avron, 75020 Paris, France; Service de Médecine Interne, Groupe Hospitalier Diaconesses-Croix Saint-Simon, 125, rue d'Avron, 75020 Paris, France.
| | - Younes Kerroumi
- Centre de Référence des Infections Ostéo-Articulaires Complexes, Groupe Hospitalier Diaconesses-Croix Saint-Simon, 125, rue d'Avron, 75020 Paris, France
| | - Vanina Meyssonnier
- Centre de Référence des Infections Ostéo-Articulaires Complexes, Groupe Hospitalier Diaconesses-Croix Saint-Simon, 125, rue d'Avron, 75020 Paris, France; Service de Médecine Interne, Groupe Hospitalier Diaconesses-Croix Saint-Simon, 125, rue d'Avron, 75020 Paris, France
| | - Beate Heym
- Centre de Référence des Infections Ostéo-Articulaires Complexes, Groupe Hospitalier Diaconesses-Croix Saint-Simon, 125, rue d'Avron, 75020 Paris, France; Laboratoire des Centres de Santé et Hôpitaux Île de France, Groupe Hospitalier Diaconesses-Croix Saint-Simon, 125, rue d'Avron, 75020 Paris, France
| | - Pascal Chazerain
- Service de Rhumatologie, Groupe Hospitalier Diaconesses-Croix Saint-Simon, 125, rue d'Avron, 75020 Paris, France
| | - Simon Marmor
- Centre de Référence des Infections Ostéo-Articulaires Complexes, Groupe Hospitalier Diaconesses-Croix Saint-Simon, 125, rue d'Avron, 75020 Paris, France; Service de Chirurgie Osseuse et Traumatologique, Groupe Hospitalier Diaconesses-Croix Saint-Simon, 125, rue d'Avron, 75020 Paris, France
| |
Collapse
|
3
|
Bogut A, Magryś A. The road to success of coagulase-negative staphylococci: clinical significance of small colony variants and their pathogenic role in persistent infections. Eur J Clin Microbiol Infect Dis 2021; 40:2249-2270. [PMID: 34296355 PMCID: PMC8520507 DOI: 10.1007/s10096-021-04315-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/09/2021] [Indexed: 01/14/2023]
Abstract
Bacterial small colony variants represent an important aspect of bacterial variability. They are naturally occurring microbial subpopulations with distinctive phenotypic and pathogenic traits, reported for many clinically important bacteria. In clinical terms, SCVs tend to be associated with persistence in host cells and tissues and are less susceptible to antibiotics than their wild-type (WT) counterparts. The increased tendency of SCVs to reside intracellularly where they are protected against the host immune responses and antimicrobial drugs is one of the crucial aspects linking SCVs to recurrent or chronic infections, which are difficult to treat. An important aspect of the SCV ability to persist in the host is the quiescent metabolic state, reduced immune response and expression a changed pattern of virulence factors, including a reduced expression of exotoxins and an increased expression of adhesins facilitating host cell uptake. The purpose of this review is to describe in greater detail the currently available data regarding CoNS SCV and, in particular, their clinical significance and possible mechanisms by which SCVs contribute to the pathogenesis of the chronic infections. It should be emphasized that in spite of an increasing clinical significance of this group of staphylococci, the number of studies unraveling the mechanisms of CoNS SCVs formation and their impact on the course of the infectious process is still scarce, lagging behind the studies on S. aureus SCVs.
Collapse
Affiliation(s)
- Agnieszka Bogut
- Chair and Department of Medical Microbiology, Medical University of Lublin, ul. Chodźki 1, 20-093, Lublin, Poland
| | - Agnieszka Magryś
- Chair and Department of Medical Microbiology, Medical University of Lublin, ul. Chodźki 1, 20-093, Lublin, Poland.
| |
Collapse
|
4
|
Liu J, Shen Z, Tang J, Huang Q, Jian Y, Liu Y, Wang Y, Ma X, Liu Q, He L, Li M. Extracellular DNA released by glycine-auxotrophic Staphylococcus epidermidis small colony variant facilitates catheter-related infections. Commun Biol 2021; 4:904. [PMID: 34294851 PMCID: PMC8298460 DOI: 10.1038/s42003-021-02423-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/05/2021] [Indexed: 11/09/2022] Open
Abstract
Though a definitive link between small colony variants (SCVs) and implant-related staphylococcal infections has been well-established, the specific underlying mechanism remains an ill-explored field. The present study analyzes the role SCVs play in catheter infection by performing genomic and metabolic analyses, as well as analyzing biofilm formation and impacts of glycine on growth and peptidoglycan-linking rate, on a clinically typical Staphylococcus epidermidis case harboring stable SCV, normal counterpart (NC) and nonstable SCV. Our findings reveal that S. epidermidis stable SCV carries mutations involved in various metabolic processes. Metabolome analyses demonstrate that two biosynthetic pathways are apparently disturbed in SCV. One is glycine biosynthesis, which contributes to remarkable glycine shortage, and supplementation of glycine restores growth and peptidoglycan-linking rate of SCV. The other is overflow of pyruvic acid and acetyl-CoA, leading to excessive acetate. SCV demonstrates higher biofilm-forming ability due to rapid autolysis and subsequent eDNA release. Despite a remarkable decline in cell viability, SCV can facilitate in vitro biofilm formation and in vivo survival of NC when co-infected with its normal counterparts. This work illustrates an intriguing strategy utilized by a glycine-auxotrophic clinical S. epidermidis SCV isolate to facilitate biofilm-related infections, and casts a new light on the role of SCV in persistent infections.
Collapse
Affiliation(s)
- Junlan Liu
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhen Shen
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jin Tang
- Department of Laboratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Qian Huang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ying Jian
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yao Liu
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yanan Wang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaowei Ma
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qian Liu
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lei He
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Min Li
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|