1
|
Chegrynets AI, Saliy ОО, Sobko IA, Krasinko VO. Immunological evaluation of inactivated Newcastle disease vaccine depending on adjuvant composition. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Newcastle disease is a global problem that is being recorded in most countries and also a serious obstacle to exchange of genetic material of poultry in various countries of the world. Control of the Newcastle disease comprises correct injection of efficacious vaccines so as to decrease or eliminate the clinical disease. Our goal was to perform comparative studies of the vaccines against Newcastle disease of water in oil type, the adjuvant being mineral oil mixed with emulsifiers (Span-80 and Tween-80) and ready-to-use adjuvant system (Montanide ISA 70), and study the impact of composition of adjuvant constituent on physical-chemical and immunogenic properties of inactivated vaccines. To reproduce virus-containing material and carried out titration of the viruses, we used chicken embryos free of pathogenic microflora. Aqueous phase for the preparation of emulsion-based vaccines of water in oil type consisted of antigen to Newcastle disease of La-Sota strain, manufactured by Biotestlab Ltd, and phosphate-saline buffer. To evaluate the effectiveness of the vaccine and induce immune response, we used 1-day old pathogen-free chickens, which were obtained from chicken embryos free of pathogenic microflora. As the positive control in the experiment, we used commercial vaccine. One-day chickens were divided into 3 groups (I, II, III) comprising 12 individuals each and one group (IV) consisting of 8 individuals as the control group with individual numeration. Chickens in groups I, II and III were divided into two subgroups (n = 8 and n = 4) to determine immunogenic efficiency and safety of the vaccine. Immunization was carried out through single subcutaneous injections in the region of the neck. To study immunogenic efficiency, the chickens were immunized with the dose of 0.1 mL (1 dose), and 0.2 mL (2 doses) to determine safety. After the immunization of 1-day old pathogen-free chickens with 0.1 mL dose, the obtained level of antibodies in the serum of vaccinated chickens on days 14, 21, 28, 35 and 42 after the vaccination indicated the ability of provoking the immune response to Newcastle disease at high level and safety of the vaccination for chickens. All the recipes of the examined series of the vaccines and the commercial vaccine produced appropriate level of viscosity according to the criterion equaling ≤ 200 mm2/s at Р <0.05, promoting fluidity of the vaccine and providing easier passage through the needle during the application. Both of the studied vaccines may be used in poultry farming for prophylaxis of Newcastle disease among chickens.
Collapse
|
2
|
Mansour SMG, ElBakrey RM, Mohamed FF, Hamouda EE, Abdallah MS, Elbestawy AR, Ismail MM, Abdien HMF, Eid AAM. Avian Paramyxovirus Type 1 in Egypt: Epidemiology, Evolutionary Perspective, and Vaccine Approach. Front Vet Sci 2021; 8:647462. [PMID: 34336965 PMCID: PMC8320000 DOI: 10.3389/fvets.2021.647462] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/14/2021] [Indexed: 12/27/2022] Open
Abstract
Avian orthoavulavirus 1, formerly known as avian paramyxovirus type-1 (APMV-1), infects more than 250 different species of birds. It causes a broad range of clinical diseases and results in devastating economic impact due to high morbidity and mortality in addition to trade restrictions. The ease of spread has allowed the virus to disseminate worldwide with subjective virulence, which depends on the virus strain and host species. The emergence of new virulent genotypes among global epizootics, including those from Egypt, illustrates the time-to-time genomic alterations that lead to simultaneous evolution of distinct APMV-1 genotypes at different geographic locations across the world. In Egypt, the Newcastle disease was firstly reported in 1947 and continued to occur, despite rigorous prophylactic vaccination, and remained a potential threat to commercial and backyard poultry production. Since 2005, many researchers have investigated the nature of APMV-1 in different outbreaks, as they found several APMV-1 genotypes circulating among various species. The unique intermingling of migratory, free-living, and domesticated birds besides the availability of frequently mobile wild birds in Egypt may facilitate the evolution power of APMV-1 in Egypt. Pigeons and waterfowls are of interest due to their inclusion in Egyptian poultry industry and their ability to spread the infection to other birds either by presence of different genotypes (as in pigeons) or by harboring a clinically silent disease (as in waterfowl). This review details (i) the genetic and pathobiologic features of APMV-1 infections in Egypt, (ii) the epidemiologic and evolutionary events in different avian species, and (iii) the vaccine applications and challenges in Egypt.
Collapse
Affiliation(s)
- Shimaa M G Mansour
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Reham M ElBakrey
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Fakry F Mohamed
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Esraa E Hamouda
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mona S Abdallah
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ahmed R Elbestawy
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhur University, Damanhur, Egypt
| | - Mahmoud M Ismail
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Hanan M F Abdien
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Amal A M Eid
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|