1
|
He J, Shi K, Shi Y, Yin Y, Feng S, Long F, Qu S, Song X. Development of a Quadruplex RT-qPCR for the Detection of Porcine Astrovirus, Porcine Sapovirus, Porcine Norovirus, and Porcine Rotavirus A. Pathogens 2024; 13:1052. [PMID: 39770312 PMCID: PMC11728830 DOI: 10.3390/pathogens13121052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/05/2025] Open
Abstract
Porcine astrovirus (PoAstV), porcine sapovirus (PoSaV), porcine norovirus (PoNoV), and porcine rotavirus A (PoRVA) are newly discovered important porcine diarrhea viruses with a wide range of hosts and zoonotic potential, and their co-infections are often found in pig herds. In this study, the specific primers and probes were designed targeting the ORF1 gene of PoAstV, PoSaV, and PoNoV, and the VP6 gene of PoRVA. The recombinant standard plasmids were constructed, the reaction conditions (concentration of primers and probes, annealing temperature, and reaction cycle) were optimized, and the specificity, sensitivity, and reproducibility were analyzed to establish a quadruplex real-time quantitative RT-PCR (RT-qPCR) assay for the detection of these four diarrheal viruses. The results demonstrated that the assay effectively tested PoAstV, PoSaV, PoNoV, and PoRVA without cross-reactivity with other swine viruses, and had limits of detection (LODs) of 138.001, 135.167, 140.732, and 132.199 (copies/reaction) for PoAstV, PoSaV, PoNoV, and PoRVA, respectively, exhibiting high specificity and sensitivity. Additionally, it displayed good reproducibility, with coefficients of variation (CVs) of 0.09-1.24% for intra-assay and 0.08-1.03% for inter-assay. The 1578 clinical fecal samples from 14 cities in Guangxi Province, China, were analyzed via the developed assay. The results indicated that the clinical samples from Guangxi Province exhibited the prevalence of PoAstV (35.93%, 567/1578), PoSaV (8.37%, 132/1578), PoNoV (2.98%, 47/1578), and PoRVA (14.32%, 226/1578), and had a notable incidence of mixed infections of 18.31% (289/1578). Simultaneously, the 1578 clinical samples were analyzed with the previously established assays, and the coincidence rates of these two approaches exceeded 99.43%. This study developed an efficient and precise diagnostic method for the detection and differentiation of PoAstV, PoSaV, PoNoV, and PoRVA, enabling the successful diagnosis of these four diseases.
Collapse
Affiliation(s)
- Junxian He
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (J.H.); (Y.S.)
| | - Kaichuang Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (J.H.); (Y.S.)
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Y.Y.); (S.F.); (F.L.); (S.Q.)
| | - Yuwen Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (J.H.); (Y.S.)
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Y.Y.); (S.F.); (F.L.); (S.Q.)
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Y.Y.); (S.F.); (F.L.); (S.Q.)
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Y.Y.); (S.F.); (F.L.); (S.Q.)
| | - Sujie Qu
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Y.Y.); (S.F.); (F.L.); (S.Q.)
| | - Xingju Song
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (J.H.); (Y.S.)
| |
Collapse
|
2
|
Wang J, Wang H, Zhang D, Liu F, Li X, Gao M, Cheng M, Bao H, Zhan J, Zeng Y, Wang C, Cao X. Lactiplantibacillus plantarum surface-displayed VP6 (PoRV) protein can prevent PoRV infection in piglets. Int Immunopharmacol 2024; 133:112079. [PMID: 38615376 DOI: 10.1016/j.intimp.2024.112079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Porcine rotavirus (PoRV) poses a threat to the development of animal husbandry and human health, leading to substantial economic losses. VP6 protein is the most abundant component in virus particles and also the core structural protein of the virus. Firstly, this study developed an antibiotic-resistance-free, environmentally friendly expression vector, named asd-araC-PBAD-alr (AAPA). Then Recombinant Lactiplantibacillus plantarum (L. plantarum) strains induced by arabinose to express VP6 and VP6-pFc fusion proteins was constructed. Subsequently, This paper discovered that NC8/Δalr-pCXa-VP6-S and NC8/Δalr-pCXa-VP6-pFc-S could enhance host immunity and prevent rotavirus infection in neonatal mice and piglets. The novel recombinant L. plantarum strains constructed in this study can serve as oral vaccines to boost host immunity, offering a new strategy to prevent PoRV infection.
Collapse
Affiliation(s)
- Junhong Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Haixu Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Dongliang Zhang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Fangyuan Liu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xiaoxu Li
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Ming Gao
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Mingyang Cheng
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Hongyu Bao
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jiaxing Zhan
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Xin Cao
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
3
|
Wang Y, Porter EP, Lu N, Zhu C, Noll LW, Hamill V, Brown SJ, Palinski RM, Bai J. Whole-genome classification of rotavirus C and genetic diversity of porcine strains in the USA. J Gen Virol 2021; 102. [PMID: 33950806 DOI: 10.1099/jgv.0.001598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rotavirus C (RVC) is associated with acute diarrhoea in both children and young animals. Because of its frequent occurrence, additional sequences have recently been generated. In this study, we sequenced 21 complete genomes from porcine diarrhoea samples and analysed them together with all available reference sequences collected from the GenBank database [National Center for Biotechnology Information (NCBI)]. Based on phylogenetic analysis and genetic distance calculation, the number of each segment was identified as 31G, 26P, 13I, 5R, 5C, 5M, 12A, 10 N, 9T, 8E and 4 H for genotypes encoding VP7, VP4, VP6, VP1, VP2, VP3 and NSP1, NSP2, NSP3, NSP4 and NSP5, respectively. From the analysis, genotypes G19-G31, P[22]-P[26], R5, A9-A12, N9-N10, T7-T9 and E6-E8 were defined as newly identified genotypes, and genotype C6 was combined with C5, and M6 was combined with M1, due to their closely related nature. Estimated with the identity frequency ratio between the intergenotype and intragenotype, the nucleotide identity cutoff values for different genotypes were determined as 85, 85, 86, 84, 83, 84, 82, 87, 84, 81 and 79 % for VP7, VP4, VP6, VP1, VP2, VP3, NSP1, NSP2, NSP3, NSP4 and NSP5, respectively. Genotyping of the 49 US strains indicated possible segment reassortment in 9 of the 11 segments, with the exceptions being VP1 and NSP5, and the most prevalent genotypes for each segment genes in the USA were G6/G5/G21/G9-P5/P4-I6/I5-R1-C5-M1-A8-N1/N10-T1-E1-H1. Our study updated the genotypes of RVC strains and provided more evidence of RVC strain diversity that may be relevant to better understand genetic diversity, and the distribution and evolution of RVC strains.
Collapse
Affiliation(s)
- Yin Wang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA
| | - Elizabeth P Porter
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA
| | - Nanyan Lu
- Bioinformatics Center, Kansas State University, Manhattan, KS 66506, USA
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA
| | - Cong Zhu
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA
| | - Lance W Noll
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA
| | - Vaughn Hamill
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA
| | - Susan J Brown
- Bioinformatics Center, Kansas State University, Manhattan, KS 66506, USA
| | - Rachel M Palinski
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|