1
|
Thadiyan V, Sharma V, Gupta R. Keratinase and its diverse applications. 3 Biotech 2025; 15:151. [PMID: 40336813 PMCID: PMC12052963 DOI: 10.1007/s13205-025-04319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 04/21/2025] [Indexed: 05/09/2025] Open
Abstract
Keratinase is a proteolytic enzyme specialized in the degradation of keratin-rich materials and has garnered significant attention for its potential in various biotechnological applications. This review provides an overview of keratinase, focusing on its structure, classification, function, biochemical properties, mechanisms of action and diverse applications. Keratinase plays an important role in bioremediation and stands out prominently, as it facilitates the eco-friendly degradation of keratinaceous waste materials addressing environmental concerns by reducing pollution and waste accumulation. Moreover, in the textile industry, keratinase plays a pivotal role in bio-pretreatment processes, enhancing the dyeing and finishing properties of animal fibers such as wool and silk. Beyond textiles, this enzyme contributes significantly to animal feed production by hydrolyzing keratin-rich byproducts into digestible components, thereby fostering the creation of high-protein feeds. Its impact extends to the cosmetic and pharmaceutical realms, where keratinase finds use in skincare formulations and in treating certain dermatological conditions owing to its ability to modify and break down keratin structures. By assisting in the removal of dead tissue, it demonstrates potential in biological applications for wound healing. Additionally, the challenges and future perspectives on the commercial scalability of keratinase production and its integration into various sectors are discussed.
Collapse
Affiliation(s)
- Varsha Thadiyan
- Department of Biotechnology, Himachal Pradesh University, Summerhill, Shimla, 171005 India
| | - Vibhuti Sharma
- Department of Biotechnology, Himachal Pradesh University, Summerhill, Shimla, 171005 India
| | - Reena Gupta
- Department of Biotechnology, Himachal Pradesh University, Summerhill, Shimla, 171005 India
| |
Collapse
|
2
|
de Menezes CLA, Boscolo M, da Silva R, Gomes E, da Silva RR. Fungal endo and exochitinase production, characterization, and application for Candida biofilm removal. Braz J Microbiol 2024; 55:2267-2277. [PMID: 38951478 PMCID: PMC11405547 DOI: 10.1007/s42770-024-01432-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024] Open
Abstract
Chitinases are promising enzymes for a multitude of applications, including chitooligosaccharide (COS) synthesis for food and pharmaceutical uses and marine waste management. Owing to fungal diversity, fungal chitinases may offer alternatives for chitin degradation and industrial applications. The rapid reproduction cycle, inexpensive growth media, and ease of handling of fungi may also contribute to reducing enzyme production costs. Thus, this study aimed to identify fungal species with chitinolytic potential and optimize chitinase production by submerged culture and enzyme characterization using shrimp chitin. Three fungal species, Coriolopsis byrsina, Trichoderma reesei, and Trichoderma harzianum, were selected for chitinase production. The highest endochitinase production was achieved in C. byrsina after 168 h cultivation (0.3 U mL- 1). The optimal temperature for enzyme activity was similar for the three fungal species (up to 45 and 55 ºC for endochitinases and exochitinases, respectively). The effect of pH on activity indicated maximum hydrolysis in acidic pH (4-7). In addition, the crude T. reesei extract showed promising properties for removing Candida albicans biofilms. This study showed the possibility of using shrimp chitin to induce chitinase production and enzymes that can be applied in different industrial sectors.
Collapse
Affiliation(s)
- Cíntia Lionela Ambrósio de Menezes
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho"- São José do Rio Preto, São Paulo, Brazil
| | - Maurício Boscolo
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho"- São José do Rio Preto, São Paulo, Brazil
| | - Roberto da Silva
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho"- São José do Rio Preto, São Paulo, Brazil
| | - Eleni Gomes
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho"- São José do Rio Preto, São Paulo, Brazil
| | - Ronivaldo Rodrigues da Silva
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho"- São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
3
|
Yan M, Chen Y, Feng Y, Saeed M, Fang Z, Zhen W, Ni Z, Chen H. Perspective on Agricultural Industrialization: Modification Strategies for Enhancing the Catalytic Capacity of Keratinase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38832583 DOI: 10.1021/acs.jafc.4c03025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Keratinases is a special hydrolytic enzyme produced by microorganisms, which has the ability to catalyze the degradation of keratin. Currently, keratinases show great potential for application in many agricultural and industrial fields, such as biofermented feed, leather tanning, hair removal, and fertilizer production. However, these potentials have not yet been fully unleashed on an industrial scale. This paper reviews the sources, properties, and catalytic mechanisms of keratinases. Strategies for the molecular modification of keratinases are summarized and discussed in terms of improving the substrate specificity, thermostability, and pH tolerance of keratinases. The modification strategies are also enriched by the introduction of immobilized enzymes and directed evolution. In addition, the selection of modification strategies when facing specific industrial applications is discussed and prospects are provided. We believe that this review serves as a reference for the future quest to extend the application of keratinases from the laboratory to industry.
Collapse
Affiliation(s)
- Mingchen Yan
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Ying Chen
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Yong Feng
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Muhammad Saeed
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Zhen Fang
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212000, China
| | - Wang Zhen
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212000, China
| | - Zhong Ni
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Huayou Chen
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| |
Collapse
|
4
|
de Menezes CLA, Boscolo M, da Silva R, Gomes E, da Silva RR. The degradation of chicken feathers by Ochrobactrum intermedium results in antioxidant and metal chelating hydrolysates and proteolytic enzymes for staphylococcal biofilm dispersion. 3 Biotech 2023; 13:202. [PMID: 37220603 PMCID: PMC10199982 DOI: 10.1007/s13205-023-03619-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/06/2023] [Indexed: 05/25/2023] Open
Abstract
The increase in the generation of chicken feathers, due to the large production of the poultry industry, has created the need to search for ecologically safer ways to manage these residues. As a sustainable alternative for recycling keratin waste, we investigated the ability of the bacterium Ochrobactrum intermedium to hydrolyze chicken feathers and the valorization of the resulting enzymes and protein hydrolysate. In submerged fermentation with three different inoculum sizes (2.5, 5.0, and 10.0 mg of bacterial cells per 50 mL of medium), the fastest degradation of feathers was achieved with 5.0 mg cells, in which a complete decomposition of the substrate (96 h) and earlier peaks of keratinolytic and caseinolytic activities were detected. In the resulting protein hydrolysate, we noticed antioxidant and Fe2+ and Cu2+ chelating activities. ABTS scavenging, Fe3+-reducing ability and metal chelating activities of the fermentative samples followed the same trend of feather degradation; as feather mass decreased in the media, these activities increased. Furthermore, we noticed about 47% and 60% dispersion of established 7-day biofilms formed by S. aureus after enzymatic treatment for 5 h and 24 h, respectively. These findings highlight the potential use of this bacterium as an environmentally friendly alternative to treat this poultry waste and offer valuable products.
Collapse
Affiliation(s)
- Cíntia Lionela Ambrosio de Menezes
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, R/ Cristóvão Colombo, 2265. Jd Nazareth, Ibilce-Unesp, São José do Rio Preto, São Paulo Brazil
| | - Maurício Boscolo
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, R/ Cristóvão Colombo, 2265. Jd Nazareth, Ibilce-Unesp, São José do Rio Preto, São Paulo Brazil
| | - Roberto da Silva
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, R/ Cristóvão Colombo, 2265. Jd Nazareth, Ibilce-Unesp, São José do Rio Preto, São Paulo Brazil
| | - Eleni Gomes
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, R/ Cristóvão Colombo, 2265. Jd Nazareth, Ibilce-Unesp, São José do Rio Preto, São Paulo Brazil
| | - Ronivaldo Rodrigues da Silva
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, R/ Cristóvão Colombo, 2265. Jd Nazareth, Ibilce-Unesp, São José do Rio Preto, São Paulo Brazil
| |
Collapse
|
5
|
Research progress on the degradation mechanism and modification of keratinase. Appl Microbiol Biotechnol 2023; 107:1003-1017. [PMID: 36633625 DOI: 10.1007/s00253-023-12360-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
Keratin is regarded as the main component of feathers and is difficult to be degraded by conventional proteases, leading to substantial abandonment. Keratinase is the only enzyme with the most formidable potential for degrading feathers. Although there have been in-depth studies in recent years, the large-scale application of keratinase is still associated with many problems. It is relatively challenging to find keratinase not only with high activity but could also meet the industrial application environment, so it is urgent to exploit keratinase with high acid and temperature resistance, strong activity, and low price. Therefore, researchers have been keen to explore the degradation mechanism of keratinases and the modification of existing keratinases for decades. This review critically introduces the basic properties and mechanism of keratinase, and focuses on the current situation of keratinase modification and the direction and strategy of its future application and modification. KEY POINTS: •The research status and mechanism of keratinase were reviewed. •The new direction of keratinase application and modification is discussed. •The existing modification methods and future modification strategies of keratinases are reviewed.
Collapse
|
6
|
Akram F, Aqeel A, Shoaib M, Haq IU, Shah FI. Multifarious revolutionary aspects of microbial keratinases: an efficient green technology for future generation with prospective applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86913-86932. [PMID: 36271998 DOI: 10.1007/s11356-022-23638-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Since the dawn of century, tons of keratin bio-waste is generated by the poultry industry annually, and they end up causing environmental havoc. Keratins are highly flexible fibrous proteins which exist in α- and β- forms and provide mechanical strength and stability to structural appendages. The finding of broad-spectrum protease, keratinase, from thermophilic bacteria and fungi, has provided an eco-friendly solution to hydrolyze the peptide bonds in highly recalcitrant keratinous substances such as nails, feathers, claws, and horns into valuable amino acids. Microorganisms produce these proteolytic enzymes by techniques of solid-state and submerged fermentation. However, solid-state fermentation is considered as a yielding approach for the production of thermostable keratinases. This review prioritized the molecular and biochemical properties of microbial keratinases, and the role of keratinases in bringing prodigious impact for the sustainable progress of the economy. It also emphasizes on the current development in keratinase production with the focus to improve the biochemical properties related to enzyme's catalytic activity and stability, and production of mutant and cloned microbial strains to improve the yield of keratinases. Recently, multitude molecular approaches have been employed to enhance enzyme's productivity, activity, and thermostability which makes them suitable for pharmaceutical industry and for the production of animal feed, organic fertilizers, biogas, clearing of animal hides, and detergent formulation. Hence, it can be surmised that microbial keratinolytic enzymes are the conceivable candidates for numerous commercial and industrial applications.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.
| | - Amna Aqeel
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Minahil Shoaib
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
- Pakistan Academy of Science, Islamabad, Pakistan
| | - Fatima Iftikhar Shah
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
7
|
Sypka M, Jodłowska I, Białkowska AM. Keratinases as Versatile Enzymatic Tools for Sustainable Development. Biomolecules 2021; 11:1900. [PMID: 34944542 PMCID: PMC8699090 DOI: 10.3390/biom11121900] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
To reduce anthropological pressure on the environment, the implementation of novel technologies in present and future economies is needed for sustainable development. The food industry, with dairy and meat production in particular, has a significant environmental impact. Global poultry production is one of the fastest-growing meat producing sectors and is connected with the generation of burdensome streams of manure, offal and feather waste. In 2020, the EU alone produced around 3.2 million tonnes of poultry feather waste composed primarily of keratin, a protein biopolymer resistant to conventional proteolytic enzymes. If not managed properly, keratin waste can significantly affect ecosystems, contributing to environmental pollution, and pose a serious hazard to human and livestock health. In this article, the application of keratinolytic enzymes and microorganisms for promising novel keratin waste management methods with generation of new value-added products, such as bioactive peptides, vitamins, prion decontamination agents and biomaterials were reviewed.
Collapse
Affiliation(s)
| | | | - Aneta M. Białkowska
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland; (M.S.); (I.J.)
| |
Collapse
|
8
|
de Menezes CLA, Santos RDC, Santos MV, Boscolo M, da Silva R, Gomes E, da Silva RR. Industrial sustainability of microbial keratinases: production and potential applications. World J Microbiol Biotechnol 2021; 37:86. [DOI: 10.1007/s11274-021-03052-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
|
9
|
Duffeck CE, de Menezes CLA, Boscolo M, da Silva R, Gomes E, da Silva RR. Keratinases from Coriolopsis byrsina as an alternative for feather degradation: applications for cloth cleaning based on commercial detergent compatibility and for the production of collagen hydrolysate. Biotechnol Lett 2020; 42:2403-2412. [PMID: 32642979 DOI: 10.1007/s10529-020-02963-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/03/2020] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Keratinases are proteolytic enzymes that emerge as an alternative for dealing with the disposal of chicken feathers. In this study, we aimed to investigate the keratin-degrading enzymes secreted by the fungus Coriolopsis byrsina and their partial biochemical characterization to adapt their use for keratin decomposition, detergent additive applications, and collagen degradation. RESULTS We observed the secretion of different proteolytic enzymes that possessed caseinolytic activity that peaked at pH 7.0-9.0 and 60-70 °C and at pH 10.5 and 55-60 °C, and keratinolytic activity that reached a maximum at pH 7.0-7.5 and 40-55 ºC and at pH 9.0 and 55 °C. Keratinolytic activity was maintained at approximately 63% of residual activity for 1 h at 50 °C. The caseinolytic activity at pH 10.5 remains stable until 1 h at 50 °C, and this is in contrast to the activity at pH 8.5, where the residual activity was 50%. Caseinolytic activity was inhibited only by PMSF, while keratinolytic activity was inhibited by PMSF and EDTA. When investigating the application of C. byrsina peptidases as an additive to commercial detergent, we observed an egg stain removal performance that was similar to that demonstrated by the commercial detergent. CONCLUSIONS Based on their activity and stability at alkaline pH, these enzymes appear to be attractive candidates for use in the detergent industry. Additionally, the collagenolytic activity of these enzymes potentially allows for their use in a wide array of industrial sectors that require collagenolytic enzymes, such as for the production of collagen hydrolysates from residues derived from the meat industry.
Collapse
Affiliation(s)
- Carlos Eduardo Duffeck
- Instituto de Biociências, Letras e Ciências Exatas-Universidade Estadual Paulista Júlio de Mesquita Filho -São José do Rio Preto, São Paulo, Brazil
| | - Cíntia Lionela Ambrosio de Menezes
- Instituto de Biociências, Letras e Ciências Exatas-Universidade Estadual Paulista Júlio de Mesquita Filho -São José do Rio Preto, São Paulo, Brazil
| | - Maurício Boscolo
- Instituto de Biociências, Letras e Ciências Exatas-Universidade Estadual Paulista Júlio de Mesquita Filho -São José do Rio Preto, São Paulo, Brazil
| | - Roberto da Silva
- Instituto de Biociências, Letras e Ciências Exatas-Universidade Estadual Paulista Júlio de Mesquita Filho -São José do Rio Preto, São Paulo, Brazil
| | - Eleni Gomes
- Instituto de Biociências, Letras e Ciências Exatas-Universidade Estadual Paulista Júlio de Mesquita Filho -São José do Rio Preto, São Paulo, Brazil
| | - Ronivaldo Rodrigues da Silva
- Instituto de Biociências, Letras e Ciências Exatas-Universidade Estadual Paulista Júlio de Mesquita Filho -São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|