1
|
Sharma S, Bindraban PS, Dimkpa CO, Pandey R. Phosphorus fertilizer: from commodity to speciality - from fertilizing the field to fertilizing the plant. Curr Opin Biotechnol 2024; 90:103198. [PMID: 39278023 DOI: 10.1016/j.copbio.2024.103198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/17/2024]
Abstract
Phosphatic fertilizers are indispensable for sustainable agriculture, but phosphorus (P) scarcity has drawn global attention with respect to research and policy discussions. Soil conditions (pH, organic matter, metal oxides), P-fertilizer form and its application methods, and plant growth mechanisms influence plant P availability. Given the nonrenewable nature and low use efficiency of P, the development of speciality P-fertilizers and improved application methods are essential for reducing environmental P losses and increasing plant P uptake, thereby improving P use efficiency (PUE). This paper explores strategies for using innovative P-fertilizers targeting plant physiological processes instead of conventional bulk field applications to enhance PUE.
Collapse
Affiliation(s)
- Sandeep Sharma
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Prem S Bindraban
- International Fertilizer Development Center, Muscle Shoals, AL 35662, USA
| | - Christian O Dimkpa
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06511, USA
| | - Renu Pandey
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
2
|
Tan S, Zhou G, Yang Q, Ge S, Liu J, Cheng YW, Yek PNY, Wan Mahari WA, Kong SH, Chang JS, Sonne C, Chong WWF, Lam SS. Utilization of current pyrolysis technology to convert biomass and manure waste into biochar for soil remediation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:160990. [PMID: 36539095 DOI: 10.1016/j.scitotenv.2022.160990] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/27/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Traditional disposal of animal manures and lignocellulosic biomass is restricted by its inefficiency and sluggishness. To advance the carbon management and greenhouse gas mitigation, this review scrutinizes the effect of pyrolysis in promoting the sustainable biomass and manure disposal as well as stimulating the biochar industry development. This review has examined the advancement of pyrolysis of animal manure (AM) and lignocellulosic biomass (LB) in terms of efficiency, cost-effectiveness, and operability. In particular, the applicability of pyrolysis biochar in enhancing the crops yields via soil remediation is highlighted. Through pyrolysis, the heavy metals of animal manures are fixated in the biochar, thereby both soil contamination via leaching and heavy metal uptake by crops are minimized. Pyrolysis biochar is potentially use in soil remediation for agronomic and environmental co-benefits. Fast pyrolysis assures high bio-oil yield and revenue with better return on investment whereas slow pyrolysis has low revenue despite its minimum investment cost because of relatively low selling price of biochar. For future commercialization, both continuous reactors and catalysis can be integrated to pyrolysis to ameliorate the efficiency and economic value of pyrolysis biochar.
Collapse
Affiliation(s)
- Shimeng Tan
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha 410004, China; College of Biological Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Guoying Zhou
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha 410004, China; College of Biological Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Quan Yang
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha 410004, China; College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Shengbo Ge
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Junang Liu
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha 410004, China; College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Yoke Wang Cheng
- Department of Chemical Engineering, School of Engineering and Computing, Manipal International University, 71800 Putra Nilai, Negeri Sembilan, Malaysia; NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower, #15-02, 138602 Singapore, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), 138602 Singapore, Singapore
| | - Peter Nai Yuh Yek
- Centre for Research of Innovation and Sustainable Development, University of Technology Sarawak, 96000 Sibu, Sarawak, Malaysia
| | - Wan Adibah Wan Mahari
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Sieng Huat Kong
- Centre on Technological Readiness and Innovation in Business Technopreneurship (CONTRIBUTE), University of Technology Sarawak, 96000 Sibu, Sarawak, Malaysia
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Center for Nanotechnology, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - William Woei Fong Chong
- Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; University Centre for Research and Development, Department of Chemistry Chandigarh University, Gharuan, Mohali, Punjab, India.
| |
Collapse
|
3
|
Zheng X, Xu W, Dong J, Yang T, Shangguan Z, Qu J, Li X, Tan X. The effects of biochar and its applications in the microbial remediation of contaminated soil: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129557. [PMID: 35999729 DOI: 10.1016/j.jhazmat.2022.129557] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
The amendment of biochar for soil bioremediation can improve soil conditions, influence soil microbial community, and achieve co-application of biochar-microbe to promote the removal of pollutants. This paper summarizes the positive effects of biochar on microorganisms, including acting as a shelter, providing nutrients, and improving soil conditions (soil aggregation, pH, cation exchange capacity (CEC), and enzymatic activity). These effects will cause variations in microbial abundance, activity, and community structure. Biochar can act as an electron mediator to promote electron transfer in the process of microbial degradation. And the application of biochar in soil bioremediation is also introduced. Nevertheless, toxic substances carried by biochar that may threaten microbial community shouldn't be overlooked. With this review, we can better understand biochar's involvement in soil bioremediation, which will help us choose and modify biochar in a targeted manner for the desired purpose in practical applications.
Collapse
Affiliation(s)
- Xuemei Zheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Weihua Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Jie Dong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Ting Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zichen Shangguan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jing Qu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
4
|
Effects of Biochar-Based Fertilizers on Energy Characteristics and Growth of Black Locust Seedlings. SUSTAINABILITY 2022. [DOI: 10.3390/su14095045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To understand ecological and energy problems in the karst area of Guizhou, China, the effects of using biochar-based fertilizers on the energy characteristics of different species of black locust were studied. To determine the most suitable species and the best rational application method of biochar, an outdoor pot experiment was performed using three species of black locust (White-flowered locust (W), Hong-sen locust (S), and Large-leaf fast-growing locust (L)). There were six treatments: control (CK), MF, RH2MF, RH4MF, W2MF, and W4MF (M—compost; F—NPK fertilizer; RH—rice husk biochar; and W—wood biochar), where the numbers represented the mass ratio of biochar to soil. Biochar-based fertilizers had significant effects on the total organic carbon (TOC), total nitrogen (TN), total potassium (TK), branch gross calorific values (GCV), and ash removal calorific values (AFCV) of seedlings. RH4MF had the best overall values. Different species had significant effects in all indicators (except for TN); the effect on S was better than that of W and L. Principal component analysis showed that RH4MF-S had the highest comprehensive scores. In summary, Hong-sen locust (S) was a high-quality energy species and RH4MF may be used as fertilization for energy forest development. This study provides a reference for future long-term energy forest research in this area.
Collapse
|
5
|
Ducey TF, Sigua GC, Novak JM, Ippolito JA, Spokas KA, Johnson MG. Microbial Response to Phytostabilization in Mining Impacted Soils Using Maize in Conjunction with Biochar and Compost. Microorganisms 2021; 9:2545. [PMID: 34946145 PMCID: PMC8707346 DOI: 10.3390/microorganisms9122545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Even after remediation, mining impacted soils can leave behind a landscape inhospitable to plant growth and containing residual heavy metals. While phytostabilization can be used to restore such sites by limiting heavy metal spread, it is reliant on soil capable of supporting plant growth. Manure-based biochars, coupled with compost, have demonstrated the ability to improve soil growth conditions in mine impacted soils, however there is a paucity of information regarding their influence on resident microbial populations. The objective of this study was to elucidate the impact of these soil amendments on microbial community structure and function in mine impacted soils placed under phytostabilization management with maize. To this aim, a combination of phospholipid fatty acid (PLFA) and enzymatic analyses were performed. Results indicate that microbial biomass is significantly increased upon addition of biochar and compost, with maximal microbial biomass achieved with 5% poultry litter biochar and compost (62.82 nmol g-1 dry soil). Microbial community structure was impacted by biochar type, rate of application, and compost addition, and influenced by pH (r2 = 0.778), EC (r2 = 0.467), and Mg soil concentrations (r2 = 0.453). In three of the four enzymes analyzed, poultry litter biochar treatments were observed with increased activity rates that were often significantly greater than the unamended control. Overall, enzyme activities rates were influenced by biochar type and rate, and addition of compost. These results suggest that using a combination of biochar and compost can be utilized as a management tool to support phytostabilization strategies in mining impacted soils.
Collapse
Affiliation(s)
- Thomas F. Ducey
- Coastal Plains Soil, Water, and Plant Research Center, ARS-USDA, Florence, SC 29501, USA; (G.C.S.); (J.M.N.)
| | - Gilbert C. Sigua
- Coastal Plains Soil, Water, and Plant Research Center, ARS-USDA, Florence, SC 29501, USA; (G.C.S.); (J.M.N.)
| | - Jeffrey M. Novak
- Coastal Plains Soil, Water, and Plant Research Center, ARS-USDA, Florence, SC 29501, USA; (G.C.S.); (J.M.N.)
| | - James A. Ippolito
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| | - Kurt A. Spokas
- National Forage Seed Production Research Center, ARS-USDA, St. Paul, MN 55105, USA;
| | - Mark G. Johnson
- Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, United States Environmental Protection Agency, Corvallis, OR 97333, USA;
| |
Collapse
|