1
|
Wang Y, Munir T, Wu X, Huang Y, Li B. Phosphorus recovery and reuse: Innovating with biochar in the circular economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 973:179143. [PMID: 40112550 DOI: 10.1016/j.scitotenv.2025.179143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 12/29/2024] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Global challenges of phosphorus pollution and scarcity underscore an urgent need for the efficient recycling of this critical resource. Biochar, a sustainable and economical material, has demonstrated significant potential as an adsorbent for phosphorus, offering a viable solution for its recovery from wastewater. Various techniques have been explored to improve the ability of biochar to adsorb inorganic phosphate. While numerous studies have reviewed methods of biochar modification, the underlying adsorption mechanisms, and the thermodynamics and kinetics involved, a thorough examination that addresses the practical challenges of real-world wastewater treatment is currently lacking. This review aims to fill this gap by quantitatively analyzing the impact of coexisting species in wastewater on the adsorption of phosphate and by exploring the potential for simultaneous removal of other contaminants, such as nutrients, heavy metals, and dissolved organic matter. The review also discusses factors that affect the desorption of phosphate from biochar and presents practical applications for biochars post-adsorption. These applications include their use as slow-release phosphorus fertilizers, additives in concrete, and as novel adsorbents for the removal of heavy metals. This comprehensive analysis serves to synthesize current research on phosphate recovery by biochars and to propose practical uses for the adsorbed phosphorus, thereby guiding the development of biochar adsorption technology towards more effective and practical phosphorus management strategies.
Collapse
Affiliation(s)
- Yuxin Wang
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China
| | - Tajammal Munir
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Xiaofeng Wu
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China
| | - Yuefei Huang
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Bing Li
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China.
| |
Collapse
|
2
|
Luo Y, Peng Y, Yan P, Wang M, Zhang Z, Qu G, Ali EF, Hooda PS, Rinklebe J, Li M, Shaheen SM, Li R. Green synthesized MgO combined with dielectric barrier discharge plasma enhanced phosphorus (P) recovery from livestock wastewater: A dual approach for management of wastewater and P resources. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124799. [PMID: 40064090 DOI: 10.1016/j.jenvman.2025.124799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 02/20/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025]
Abstract
Phosphorus (P) recovery from wastewater using integrated techniques i.e., adsorption combined with advanced oxidation technologies is a novel approach for cleaning wastewater and preventing eutrophication. This approach, however, has not been extensively studied, particularly in the context of real wastewater applications. In this study, a green biomass-based sol-gel method was developed using potato starch (PS) and MgCl2·6H2O to synthesize MgO (PS-MgO). The unique synthesis method resulted in PS-MgO composed predominantly of spherical particles with an average size of about 103 nm and exhibited superior P adsorption performance compared to commercial MgO materials (GH-MgO and AD-MgO). The Langmuir maximum P adsorption capacity (mg/g) of the PS-MgO was 429.4, while that of the commercial GH-MgO and AD-MgO was 341.3 and 421.7, respectively, at the solution pH 7.0. The kinetic model fitting demonstrated that the adsorption rate of PS-MgO was faster than the two commercial MgOs. Importantly, PS-MgO can maintain a high P adsorption capacity across a wide pH range (425 mg/g at pH 5.0 and 369 mg/g at pH 11.0), whereas the P adsorption capacities of GH-MgO (153 at pH 5.0 and 297 at pH 11.0) and AD-MgO (422 at pH 5.0 and 200 at pH 11.0) were more pH-dependent. In addition, PS-MgO exhibits high selectivity for P capture in solutions containing coexisting ions, and the P-loaded PS-MgO can efficiently release P through acid or base treatment, highlighting its potential for reuse as a fertilizer. To enhance P recovery from real livestock wastewater, the dielectric barrier discharge (DBD) plasma technology was combined with MgO adsorption. The P recovery capacity of MgOs from livestock wastewater increased 1.4-1.7 times after DBD plasma treatment, attributed to the degradation of aromatic proteins and microbial metabolites. These findings provide new insights into the design of efficient and environmentally friendly materials for P recovery, while also demonstrating the potential of integrating advanced oxidation technologies with adsorption processes.
Collapse
Affiliation(s)
- Yuan Luo
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Yaru Peng
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Pengcheng Yan
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Miaoqu Wang
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Zhibo Zhang
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, 11099, Taif, 21944, Saudi Arabia
| | - Peter S Hooda
- Faculty of Engineering, Computing and the Environment, Kingston University London, Kingston Upon Thames, KT1 2EE, London, UK
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Manlin Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany.
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Huang Y, Wu Q, Yan J, Chu F, Xu Y, Li D, Zhang H, Yang S. Efficient removal and recovery of phosphate by biochar loaded with ultrafine MgO nanoparticles. ENVIRONMENTAL RESEARCH 2025; 266:120518. [PMID: 39638027 DOI: 10.1016/j.envres.2024.120518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Biochar loaded with MgO is a promising adsorbent for the removal and recovery of phosphate from aqueous solutions. However, its phosphate adsorption capacity is unsatisfactory, especially at low phosphate concentrations. Loading nanoscale MgO onto biochar is an effective strategy. Here, ultrafine MgO nanoparticles and MgO nanosheets were loaded onto biochar from steam-exploded straw (UMB and SMB) via an impregnation-precipitation-pyrolysis method. The crystal sizes of ultrafine MgO nanoparticles and MgO nanosheets were about 6-8 nm and 10-16 nm, respectively. The phosphate adsorption capacity of UMB at C0 = 100 mg P L-1 was 219.4 mg P g-1, which was higher than that of SMB (164.9 mg P g-1). The results suggest that surface precipitation was the dominant adsorption mechanism and the hydration process and the smaller particle size of MgO may play a key role in the superior phosphate removal by UMB. Removal tests in real low-concentration phosphate water samples showed that 0.05 g L-1 UMB could reduce the phosphate concentration from 0.17 mg P L-1 to 0.01 mg P L-1. In addition, phosphate could be desorbed from UMB in varying environments, and therefore has the potential to be used in fertilizer production or directly as a slow-release fertilizer.
Collapse
Affiliation(s)
- Yanpeng Huang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Qiong Wu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingfan Yan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Fumin Chu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuming Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Dongmin Li
- COFCO Nutrition and Health Research Institute, Beijing, 102209, China
| | - Hongjia Zhang
- COFCO Nutrition and Health Research Institute, Beijing, 102209, China
| | - Sen Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Fu W, Yao X, Zhang L, Zhou J, Zhang X, Yuan T, Lv S, Yang P, Fu K, Huo Y, Wang F. Design optimization of bimetal-modified biochar for enhanced phosphate removal performance in livestock wastewater using machine learning. BIORESOURCE TECHNOLOGY 2025; 418:131898. [PMID: 39615764 DOI: 10.1016/j.biortech.2024.131898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Mg-modified biochar shows high adsorption performance under weakly acidic and neutral water conditions. However, its phosphate removal efficiency markedly decreases in naturally alkaline wastewater, such as that released in livestock farming (anaerobic wastewater with a high phosphate concentration). This research employed six machine learning models to predict and optimize the phosphate removal performance of bimetal-modified biochar (i.e., Mg-Ca/Al/Fe/La) to develop material design strategies suitable for achieving high removal efficiency in alkaline wastewater. Random forest, gradient boosting regressor, and extreme gradient boosting models achieved high prediction accuracy (R2 > 0.98). Model predictions and experimental validations indicated that Mg-Ca-modified biochar still maintained high adsorption capacity under acidic conditions and could effectively realize phosphate adsorption under alkaline conditions, with a removal rate of 99.33 %. Overall, this research focuses on material performance optimization using machine learning, offering insights and methods for developing biochar materials for practical water-treatment applications.
Collapse
Affiliation(s)
- Weilin Fu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xia Yao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Lisheng Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jien Zhou
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xueyan Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Tian Yuan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Shiyu Lv
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Pu Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Kerong Fu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yingqiu Huo
- College of Information Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Feng Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
5
|
Yesto SJK, Shang H, Lv X, Abdalla JT, Wang T, Yu Y. Effect of inorganic component of biochar on lead adsorption performance and the enhancement by MgO modification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65427-65445. [PMID: 39580369 DOI: 10.1007/s11356-024-35556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/07/2024] [Indexed: 11/25/2024]
Abstract
Biomass-derived biochar has enormous potential for sustainable and low-cost treatment of lead-contained wastewater. In this study, corncob and cow dung-derived biochar were prepared. The increase in pyrolysis temperature could improve the porous structures, surface area, functional groups and alkalinity, and further provide a higher Pb2+ capacity in both biochars. Cow dung biochar performed better than corncob for its higher inorganic mineral content and more alkaline surface. Among them, CDB-600 performed the Langmuir maximum capacity of 357.1 mg/g, with a high surface area of 144.3 m2/g; ion exchange and precipitate were the main adsorption mechanisms. After further MgO modification, the M-CDB displayed a high surface area of 166 m2/g, and ion exchangeability and precipitate-promoting effects were improved. M-CDB performed a Langmuir maximum capacity of 833.3 mg/g. The pHpzc was found to be 10 and the adsorbents portray a very good Pb2+ adsorption selectivity among coexisting ions in the solution. The adsorption process was found to be endothermic, feasible, spontaneous and chemisorption. The fixed lead on CDB-600 was stable in water. The immobilized lead could be desorbed by acid wash. CDB-600 performed better in terms of sustainability in use, which could support its continuous application ability.
Collapse
Affiliation(s)
| | - Hongru Shang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaohong Lv
- Heilongjiang Academy of Forestry Sciences, Harbin, China
| | - James Taban Abdalla
- School of Applied and Industrial Sciences, University of Juba, Juba, South Sudan
| | - Tengfei Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450000, China
| | - Yanling Yu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
6
|
Halder S, Wang Z, Roy PK, Sedighi M. Improving the adsorption properties of low surface area hardwood biochar for the removal of Fe + and PO₄ 3- from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60936-60958. [PMID: 39397234 DOI: 10.1007/s11356-024-35249-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
Biochar produced from wood residues may provide a new method and material for managing the environment, particularly in terms of carbon sequestration and contaminant remediation. Additionally, biochar produced from wood residues is free of chemical fertilizers, likewise in rice straw, wheat straw, corn straw, etc. This study investigated the removal of iron from aqueous solutions by a novel low-cost and eco-friendly biochar made from hardwood trees and modified by adding MgCl2 for effective phosphate removal. Optimal adsorption conditions were determined through studies of adsorption time, pH, and adsorbent dosage. Batch equilibrium isotherm and kinetic experiments and pre/post-adsorption characterizations using FESEM-EDS, XRD, and FTIR suggested that the presence of carboxyl group elements and colloidal and nano-sized MgO (periclase) particles on the biochar surface were the main adsorption sites for aqueous iron and phosphate respectively. In this study, the HW and MgO-HW biochar showed excellent Dubinin-Radushkevich isotherm (D-R) maximum adsorption capacities of 289.45 and 828.82 mg/g for iron and phosphate. The kinetic study for iron and phosphate adsorption was described well by pseudo second-order model and pseudo second-order model respectively. The HW biochar and the prepared MgO-HW biochar exhibited commendable iron adsorption (98.25%) performance at 10 pH units and phosphate (96.22%) at pH 6 respectively. Thus, this research reveals a waste-to-wealth strategy by converting hardwood waste into mineral-biomass biochar with excellent Fe and P adsorption capabilities and environmental adaptability.
Collapse
Affiliation(s)
- Sudipa Halder
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, United Kingdom.
- School of Water Resources Engineering, Jadavpur University, Kolkata, India.
| | - Ziheng Wang
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, United Kingdom
| | - Pankaj Kumar Roy
- School of Water Resources Engineering, Jadavpur University, Kolkata, India
| | - Majid Sedighi
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
7
|
Hu A, Jiang Y, An J, Huang X, Elgarhy AH, Cao H, Liu G. Novel Fe/Ca oxide co-embedded coconut shell biochar for phosphorus recovery from agricultural return flows. RSC Adv 2024; 14:27204-27214. [PMID: 39193306 PMCID: PMC11348781 DOI: 10.1039/d4ra04795h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Efficient elimination and recovery of phosphorus from agricultural return flows are crucial for effective eutrophication management and phosphorus reuse. In this study, a neutral Fe/Ca oxide co-embedded biochar (FCBC) was synthesized using calcium peroxide and ferrous chloride as precursors for phosphate recovery from agricultural return flows. FCBC possesses a highly intricate pore structure and an abundance of surface-active groups. Fe/Ca oxides were loaded onto the biochar in the form of Ca2Fe2O5, Fe2O3, and CaCO3. FCBC demonstrated a broad pH tolerance range (pH = 6-12) in the aquatic environment. The maximum saturation adsorption capacity was 53.31 mg g-1. Phosphorus removal is influenced by Ca3(PO4)2 generation, intra-particle diffusion, and electrostatic attraction. The produced FCBC showed exceptional phosphorus removal efficiency in the presence of various anions, except for wastewater with high concentrations of SO4 2-, CO3 2-, HCO3 -, and F- (>500 mg L-1). FCBC can effectively remove phosphorus from agricultural return flows and reduce the risk of the water environment. Returning it to the field can also mitigate the depletion of phosphorus resources, effectively reduce carbon emissions from farmland, improve soil fertility, and realize multiple benefits.
Collapse
Affiliation(s)
- Anqi Hu
- PowerChina Huadong Engineering Corporation Ltd. Hangzhou 311122 Zhejiang Province China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University Wuhan 430070 China
| | - Yongcan Jiang
- PowerChina Huadong Engineering Corporation Ltd. Hangzhou 311122 Zhejiang Province China
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University Hangzhou 310058 Zhejiang Province China
| | - Jiaqi An
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University Wuhan 430070 China
| | - Xiaodian Huang
- PowerChina Huadong Engineering Corporation Ltd. Hangzhou 311122 Zhejiang Province China
| | - Abdelbaky Hossam Elgarhy
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University Wuhan 430070 China
- Central Laboratory for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC) Qalyobia 13621 Egypt
| | - Huafen Cao
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University Wuhan 430070 China
| | - Guanglong Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University Wuhan 430070 China
| |
Collapse
|
8
|
Qadir MF, Naveed M, Khan KS, Mumtaz T, Raza T, Mohy-Ud-Din W, Mustafa A. Divergent responses of phosphorus solubilizing bacteria with P-laden biochar for enhancing nutrient recovery, growth, and yield of canola (Brassica napus L.). CHEMOSPHERE 2024; 353:141565. [PMID: 38423145 DOI: 10.1016/j.chemosphere.2024.141565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 02/02/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
The growing global population has led to a heightened need for food production, and this rise in agricultural activity is closely tied to the application of phosphorus-based fertilizers, which contributes to the depletion of rock phosphate (RP) reserves. Considering the limited P reserves, different approaches were conducted previously for P removal from waste streams, while the adsorption of ions is a novel strategy with more applicability. In this study, a comprehensive method was employed to recover phosphorus from wastewater by utilizing biochar engineered with minerals such as calcium, magnesium, and iron. Elemental analysis of the wastewater following a batch experiment indicated the efficiency of the engineered biochar as an adsorbent. Subsequently, the phosphorus-enriched biochar, hereinafter (PL-BCsb), obtained from the wastewater, underwent further analysis through FTIR, XRD, and nutritional assessments. The results revealed that the PL-BCsb contained four times higher (1.82%) P contents which further reused as a fertilizer supplementation for Brassica napus L growth. PL-BCsb showed citric acid (34.03%), Olsen solution (10.99%), and water soluble (1.74%) P desorption. Additionally, phosphorous solubilizing bacteria (PSB) were incorporated with PL-BCsb along two P fertilizer levels P45 (45 kg ha-1) and P90 (90 kg ha-1) for evaluation of phosphorus reuse efficiency. Integrated application of PL-BCsb with half of the suggested amount of P45 (45 kg ha-1) and PSB increased growth, production, physiological, biochemical, and nutritional qualities of canola by almost two folds when compared to control. Similarly, it also improved soil microbial biomass carbon up to four times, alkaline and acid phosphatases activities both by one and half times respectively as compared to control P (0). Furthermore, this investigation demonstrated that waste-to-fertilizer technology enhanced the phosphorus fertilizer use efficiency by 55-60% while reducing phosphorus losses into water streams by 90%. These results have significant implications for reducing eutrophication, making it a promising approach for mitigating environmental pollution and addressing climate change.
Collapse
Affiliation(s)
- Muhammad Farhan Qadir
- Institute of Soil & Environmental Sciences, University of Agriculture Faisalabad, 38000 Pakistan; College of Resources and Environment, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, Xinjiang, China
| | - Muhammad Naveed
- Institute of Soil & Environmental Sciences, University of Agriculture Faisalabad, 38000 Pakistan.
| | - Khuram Shehzad Khan
- Institute of Soil & Environmental Sciences, University of Agriculture Faisalabad, 38000 Pakistan; College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Tooba Mumtaz
- Institute of Soil & Environmental Sciences, University of Agriculture Faisalabad, 38000 Pakistan; College of Resources and Environment, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, Xinjiang, China
| | - Taqi Raza
- Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville-USA
| | - Waqas Mohy-Ud-Din
- Institute of Soil & Environmental Sciences, University of Agriculture Faisalabad, 38000 Pakistan
| | - Adnan Mustafa
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
9
|
Yang H, He S, Feng Q, Liu Z, Xia S, Zhou Q, Wu Z, Zhang Y. Lotus (Nelumbo nucifera): a multidisciplinary review of its cultural, ecological, and nutraceutical significance. BIORESOUR BIOPROCESS 2024; 11:18. [PMID: 38647851 PMCID: PMC10991372 DOI: 10.1186/s40643-024-00734-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/16/2024] [Indexed: 04/25/2024] Open
Abstract
This comprehensive review systematically examines the multifarious aspects of Nelumbo nucifera, elucidating its ecological, nutritional, medicinal, and biomimetic significance. Renowned both culturally and scientifically, Nelumbo nucifera manifests remarkable adaptability, characterized by its extensive distribution across varied climatic regions, underpinned by its robust rhizome system and prolific reproductive strategies. Ecologically, this species plays a crucial role in aquatic ecosystems, primarily through biofiltration, thereby enhancing habitat biodiversity. The rhizomes and seeds of Nelumbo nucifera are nutritionally significant, being rich sources of dietary fiber, essential vitamins, and minerals, and have found extensive culinary applications. From a medicinal perspective, diverse constituents of Nelumbo nucifera exhibit therapeutic potential, including anti-inflammatory, antioxidant, and anti-cancer properties. Recent advancements in preservation technology and culinary innovation have further underscored its role in the food industry, highlighting its nutritional versatility. In biomimetics, the unique "lotus effect" is leveraged for the development of self-cleaning materials. Additionally, the transformation of Nelumbo nucifera into biochar is being explored for its potential in sustainable environmental practices. This review emphasizes the critical need for targeted conservation strategies to protect Nelumbo nucifera against the threats posed by climate change and habitat loss, advocating for its sustainable utilization as a species of significant value.
Collapse
Affiliation(s)
- Hang Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Simai He
- School of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Qi Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zisen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shibin Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Tu P, Zhang G, Cen Y, Huang B, Li J, Li Y, Deng L, Yuan H. Enhanced phosphate adsorption and desorption characteristics of MgO-modified biochars prepared via direct co-pyrolysis of MgO and raw materials. BIORESOUR BIOPROCESS 2023; 10:49. [PMID: 38647775 PMCID: PMC10991339 DOI: 10.1186/s40643-023-00670-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/28/2023] [Indexed: 04/25/2024] Open
Abstract
Biochar modified by metal ions-particularly Mg-is typically used for the effective recovery of phosphorous. In this study, MgO-modified biochars were synthesized via the direct co-pyrolysis of MgO and raw materials such as rice straw, corn straw, Camellia oleifera shells, and branches from garden waste, which were labeled as MRS, MCS, MOT, and MGW, respectively. The resulting phosphate (PO) adsorption capacities and potential adsorption mechanisms were analyzed. The PO adsorption capacities of the biochars were significantly improved after the modification with MgO: MRS (24.71 ± 0.32 mg/g) > MGW (23.55 ± 0.46 mg/g) > MOT (15.23 ± 0.19 mg/g) > MCS (14.12 ± 0.21 mg/g). PO adsorption on the modified biochars was controlled by physical adsorption, precipitation, and surface inner-sphere complexation processes, although no electrostatic attraction was observed. Furthermore, PO adsorbed on modified biochars could be released under acidic, alkaline, and neutral conditions. The desorption efficiency of MRS was modest, indicating its suitability as a slow-release fertilizer.
Collapse
Affiliation(s)
- Panfeng Tu
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Guanlin Zhang
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yingyuan Cen
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Baoyuan Huang
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Juan Li
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Yongquan Li
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Lifang Deng
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Haoran Yuan
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
11
|
Shang H, Hu W, Li Y, Zhang Q, Feng Y, Xu Y, Yu Y. Biochar-supported magnesium oxide as high-efficient lead adsorbent with economical use of magnesium precursor. ENVIRONMENTAL RESEARCH 2023; 229:115863. [PMID: 37031720 DOI: 10.1016/j.envres.2023.115863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/03/2023] [Accepted: 04/07/2023] [Indexed: 05/21/2023]
Abstract
With unique porous structure inherited from lignocellulose, biochar was an appropriate carrier for small-size MgO materials, which could simplify the synthetic process and better solve agglomeration and separation problems during adsorption. Biochar-supported MgO was prepared with impregnation method. Under different synthesis conditions, the obtained MgO presented diverse properties, and moderate pyrolysis condition was conducive to the improvement of Mg conversion rate. The Pb(II) capacity was highly correlated with Mg content, rather than the specific surface area. Reducing the pyrolysis temperature or increasing the usage of supporter could improve adsorption efficiency when using Mg content-normalized capacity as the criterion. The better release ability of Mg, contribute by the higher extent of hydration and better spread of MgO, were the critical factors. The maximal Mg content-normalized capacity could reach 0.932 mmol·mmol-Mg-1 with the mass ratio of biochar/MgCl2·6H2O = 4:1 at the pyrolysis temperature of 600 °C. Considering the ultimate utilization efficiency of Mg in precursor, the optimum Mg consumption-normalized capacity was 0.744 mmol·mmol-Mg-1 with the mass ratio of biochar/MgCl2·6H2O = 1:1 at 600 °C.
Collapse
Affiliation(s)
- Hongru Shang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Weijie Hu
- School of Chemistry, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Yinxue Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Qiuzhuo Zhang
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yanling Xu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yanling Yu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
12
|
Liu N, Niu G, Xu L, Wang J, Li C, Liu Y. Efficient cadmium immobilization by organic loaded Na-montmorillonite in a contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163457. [PMID: 37062320 DOI: 10.1016/j.scitotenv.2023.163457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023]
Abstract
Clay minerals are effective sorbents for toxic metal immobilization in contaminated soils and waters. However, their Cd immobilization efficiency is unclear when they are loaded with organics. In this study, sodium montmorillonite (Na-M) was successfully loaded with potassium humate, chitosan, and glycine to adsorb Cd(II) in solution. Potassium humate loaded Na-M (Na-M-HA), which had the highest specific surface area and cation exchange capacity (CEC), showed the highest Cd(II) adsorption capacity (73.7 mg g-1), 22.5 % and 81.8 % higher than that of chitosan loaded Na-M (Na-M-CTS) and glycine loaded Na-M (Na-M-G), respectively. The pseudo-second-order kinetic model best described (R2 > 0.98) the adsorption kinetics of Cd(II) on the three Na-Ms, indicating that the adsorption processes were of chemisorption nature. The adsorption isotherm of Cd(II) on Na-M-HA was of the Freundlich type, suggesting multilayer adsorption. In contrast, the isothermal adsorption of Cd(II) on Na-M-CTS (R2 = 0.99) and Na-M-G (R2 = 0.89) was better described by the Langmuir model, suggesting the dominance of monolayer adsorption in the adsorption process. High temperature, high pH, low background ionic strength, and low valence competing cations favored Cd(II) adsorption on Na-M-HA. The underlying mechanisms of Cd(II) sorption on Na-M-HA were electrostatic attraction, ion exchange and complexation. Na-M-HA was applied to a Cd polluted soil planted with lettuce (Lactuca sativa L.). in a pot experiment. Compared to the control with no adsorbent application, Na-M-HA application at 2 % effectively reduced the available Cd content in soil and Cd accumulation in plant by 36.0 % and 56.8 %, respectively. This work demonstrated that Na-M-HA is a green, low-cost and excellent adsorbent for Cd stabilization, and that its application in Cd-polluted soils can efficiently reduce Cd bioavailability and thereby Cd transfer along the food chain and eventually reduce the threat of Cd pollution to human health.
Collapse
Affiliation(s)
- Na Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Guoliang Niu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Liwen Xu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jiaqi Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Chengliang Li
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yanli Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
13
|
Lee JI, Jadamba C, Yoo SC, Lee CG, Shin MC, Lee J, Park SJ. Cycling of phosphorus from wastewater to fertilizer using wood ash after energy production. CHEMOSPHERE 2023:139191. [PMID: 37307930 DOI: 10.1016/j.chemosphere.2023.139191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/25/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Quercus wood was used for thermal energy production, and wood bottom ash (WDBA) was used as a medium for water purification and soil fertilizer in accordance with the recently proposed food-water-energy nexus concept. The wood contained a gross calorific value of 14.83 MJ kg-1, and the gas generated during thermal energy production has the advantage of not requiring a desulfurization unit due to its low sulfur content. Wood-fired boilers emit less CO2 and SOX than coal boilers. The WDBA had a Ca content of 66.0%, and Ca existed in the forms of CaCO3 and Ca(OH)2. WDBA absorbed P by reacting with Ca in the form of Ca5(PO4)3OH. Kinetic and isotherm models revealed that the results of the experimental work were in good agreement with the pseudo-second-order and Langmuir models, respectively. The maximum P adsorption capacity of WDBA was 76.8 mg g-1, and 6.67 g L-1 of WDBA dose could completely remove P in water. The toxic units of WDBA tested using Daphnia magna were 6.1, and P adsorbed WDBA (P-WDBA) showed no toxicity. P-WDBA was used as an alternative P fertilizer for rice growth. P-WDBA application resulted in significantly greater rice growth in terms of all agronomic values compared to N and K treatments without P. This study proposed the utilization of WDBA, obtained from thermal energy production, to remove P from wastewater and replenish P in the soil for rice growth.
Collapse
Affiliation(s)
- Jae-In Lee
- Department of Integrated System Engineering, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Chuluuntsetseg Jadamba
- Department of Plant Life & Environmental Science, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Soo-Cheul Yoo
- Department of Plant Life & Environmental Science, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Chang-Gu Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Myung-Chul Shin
- Department of Clean Energy, Korea Institute of Industrial Technology, Cheonan, 31056, Republic of Korea
| | - Jechan Lee
- Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Seong-Jik Park
- Department of Integrated System Engineering, Hankyong National University, Anseong, 17579, Republic of Korea; Department of Bioresources and Rural System Engineering, Hankyong National University, Anseong, 17579, Republic of Korea.
| |
Collapse
|
14
|
Jellali S, Hadroug S, Al-Wardy M, Al-Nadabi H, Nassr N, Jeguirim M. Recent developments in metallic-nanoparticles-loaded biochars synthesis and use for phosphorus recovery from aqueous solutions. A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118307. [PMID: 37269723 DOI: 10.1016/j.jenvman.2023.118307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
Phosphorus (P) represents a major pollutant of water resources and at the same time a vital element for human and plants. P recovery from wastewaters and its reuse is a necessity in order to compensate the current important depletion of P natural reserves. The use of biochars for P recovery from wastewaters and their subsequent valorization in agriculture, instead of synthetic industrial fertilizers, promotes circular economy and sustainability concepts. However, P retention by pristine biochars is usually low and a modification step is always required to improve their P recovery efficiency. The pre- or post-treatment of biochars with metal salts seems to be one of the most efficient approaches. This review aims to summarize and discuss the most recent developments (from 2020- up to now) in: i) the role of the feedstock nature, the metal salt type, the pyrolysis conditions, and the experimental adsorption parameters on metallic-nanoparticles-loaded biochars properties and effectiveness in recovering P from aqueous solutions, as well as the dominant involved mechanisms, ii) the effect of the eluent solutions nature on the regeneration ability of P-loaded biochars, and iii) the practical challenges facing the upscaling of P-loaded biochars production and valorization in agriculture. This review shows that the synthesized biochars through slow pyrolysis at relatively high temperatures (up to 700-800 °C) of mixed biomasses with Ca- Mg-rich materials or impregnated biomasses with specific metals in order to from layered double hydroxides (LDHs) biochars composites exhibit interesting structural, textural and surface chemistry properties allowing high P recovery efficiency. Depending on the pyrolysis's and adsorption's experimental conditions, these modified biochars may recover P through combined mechanisms including mainly electrostatic attraction, ligand exchange, surface complexation, hydrogen bonding, and precipitation. Moreover, the P-loaded biochars can be used directly in agriculture or efficiently regenerated with alkaline solutions. Finally, this review emphasizes the challenges concerning the production and use of P-loaded biochars in a context of circular economy. They concern the optimization of P recovery process from wastewater in real-time scenarios, the reduction of energy-related biochars production costs and the intensification of communication/dissemination campaigns to all the concerned actors (i.e., farmers, consumers, stakeholders, and policymakers) on the benefits of P-loaded biochars reuse. We believe that this review is beneficial for new breakthroughs on the synthesis and green application of metallic-nanoparticles-loaded biochars.
Collapse
Affiliation(s)
- Salah Jellali
- Centre for Environmental Studies and Research, Sultan Qaboos University, Al-Khoudh 123, Muscat, Oman.
| | - Samar Hadroug
- Wastewaters and Environment Laboratory, Water Research and Technologies Centre, Carthage University, Soliman, 2050, Tunisia.
| | - Malik Al-Wardy
- Department of Soils, Water and Agricultural Engineering, College of Agriculture and Marine Sciences, Sultan Qaboos University, Al-Khoudh 123, Muscat, Oman.
| | - Hamed Al-Nadabi
- Centre for Environmental Studies and Research, Sultan Qaboos University, Al-Khoudh 123, Muscat, Oman.
| | - Najat Nassr
- Rittmo Agroenvironnement, ZA Biopôle, 37 Rue de Herrlisheim, CS 80023, F-68025 Colmar Cedex, France.
| | - Mejdi Jeguirim
- Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute-Alsace, CNRS, UMR, 7361, F-68100, Mulhouse, France; Institut de Science des Matériaux de Mulhouse (IS2M), Université de Strasbourg, CNRS, UMR, 7361, F-67081, Strasbourg, France.
| |
Collapse
|
15
|
Hao M, Wu W, Habibul N, Chai G, Ma X, Ma X. Fe-modified fly ash/cotton stalk biochar composites for efficient removal of phosphate in water: mechanisms and green-reuse potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27372-9. [PMID: 37155106 DOI: 10.1007/s11356-023-27372-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
Excessive phosphate content input into natural water can lead to the waste of resource and eutrophication. Biochar is a kind of low-cost adsorbent. However, its adsorption capacity for phosphate is low. In order to solve this problem, Fe compound-modified fly ash/cotton stalk biochar composites (Fe-FBC) were prepared through co-pyrolyzed fly ash and cotton stalk at 800℃, followed by infiltration of FeSO4 solution. The samples were characterized by scanning electron microscopy, Brunauer-Emmett-Teller, X-ray diffraction, Fourier transform infrared spectroscopy, and zeta potential. After modification, the hydrophilicity and polarity of Fe-FBC increased. In addition, the pore volume, specific surface area, and surface functional groups were significantly improved. The adsorption behavior of Fe-FBC for the removal of phosphate from water can be well fitted by the pseudo-second-order kinetic and Sips isotherm adsorption model, with a maximum adsorption capacity of 47.91 mg/g. Fe-FBC maintained a high adsorption capacity in the pH range of 3-10. The coexisting anions (NO3-, SO42-, and Cl-) had negligible effects on phosphate adsorption. The adsorption mechanisms of Fe-FBC include electrostatic attraction, ligand exchange, surface complexation, ion exchange, chemical precipitation, and hydrogen bonding. Moreover, the desorption process of phosphate was investigated, indicating that the phosphate-saturated Fe-FBC could use as slow-release phosphate fertilizer. This study proposed a potentially environmental protection and recycling economy approach, which consists of recycling resources and treating wastes with wastes.
Collapse
Affiliation(s)
- Mengqi Hao
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Wei Wu
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China.
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, Xinjiang Normal University, Urumqi, 830054, China.
| | - Nuzahat Habibul
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, Xinjiang Normal University, Urumqi, 830054, China
| | - Guang Chai
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Xiaoli Ma
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, Xinjiang Normal University, Urumqi, 830054, China
| | - Xiaoqian Ma
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| |
Collapse
|
16
|
Sarker P, Liu X, Hata N, Takeshita H, Miyamura H, Maruo M. Thermally modified bamboo-eggshell adsorbent for phosphate recovery and its sustainable application as fertilizer. ENVIRONMENTAL RESEARCH 2023; 231:115992. [PMID: 37121352 DOI: 10.1016/j.envres.2023.115992] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023]
Abstract
Phosphate recovery from wastewater using readily available biowaste-based adsorbents is beneficial for both eutrophication control and waste management. Bamboo char has a high-density porous structure and eggshell contains CaCO3 with high affinity for phosphate. The combination of calcined bamboo and eggshell is a potential adsorbent for P recovery that has not been tested previously. Because bamboo char and eggshell both are popular for soil amendment, a P-loaded bamboo and eggshell composite is a promising fertilizer for long-term soil improvement. In this work, the feasibility of calcined bamboo and eggshell (BE) for P recovery and its use as fertilizer were investigated. The adsorption capacity and mechanism were examined using adsorption kinetic, isotherm, and thermodynamic analysis. The kinetic study showed that the experimental data sets were fitted best by a pseudo second-order model, indicating chemisorption. The Langmuir isotherm model estimated maximum adsorption capacities of 95.14 and 98.40 mg/g for BE 1:1 and 2:1 adsorbent. Monolayer adsorption occurred on a homogenous surface. The adsorption reaction was non-spontaneous at 298 K and exothermic for the BE 1:1 and 2:1 adsorbent, and the calculated Langmuir separation factor indicated favorable conditions for P adsorption. The desorption study showed lower P desorption capacity in water than in neutral ammonium citrate. P-loaded eggshell-modified bamboo char was an effective slow-release fertilizer for Japanese mustard spinach cultivation, which is a sustainable and environment friendly use of P-loaded materials.
Collapse
Affiliation(s)
- Protima Sarker
- Division of Environmental Dynamics, Graduate School of Environmental Science, The University of Shiga Prefecture, Japan; Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Bangladesh
| | - Xin Liu
- Department of Ecosystem Studies, School of Environmental Science, The University of Shiga Prefecture, Japan
| | - Naoki Hata
- Department of Biological Resources Management, School of Environmental Science, The University of Shiga Prefecture, Japan
| | - Hiroki Takeshita
- Department of Materials Science, School of Technology, The University of Shiga Prefecture, Japan
| | - Hiroshi Miyamura
- Department of Materials Science, School of Technology, The University of Shiga Prefecture, Japan
| | - Masahiro Maruo
- Department of Ecosystem Studies, School of Environmental Science, The University of Shiga Prefecture, Japan.
| |
Collapse
|
17
|
Feng C, Zhang L, Zhang X, Li J, Li Y, Peng Y, Luo Y, Li R, Gao B, Hamouda MA, Smith K, Ali EF, Lee SS, Zhang Z, Rinklebe J, Shaheen SM. Bio-assembled MgO-coated tea waste biochar efficiently decontaminates phosphate from water and kitchen waste fermentation liquid. BIOCHAR 2023; 5:22. [DOI: 10.1007/s42773-023-00214-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 08/20/2023]
Abstract
AbstractCrystal morphology of metal oxides in engineered metal-biochar composites governs the removal of phosphorus (P) from aqueous solutions. Up to our best knowledge, preparation of bio-assembled MgO-coated biochar and its application for the removal of P from solutions and kitchen waste fermentation liquids have not yet been studied. Therefore, in this study, a needle-like MgO particle coated tea waste biochar composite (MTC) was prepared through a novel biological assembly and template elimination process. The produced MTC was used as an adsorbent for removing P from a synthetic solution and real kitchen waste fermentation liquid. The maximum P sorption capacities of the MTC, deduced from the Langmuir model, were 58.80 mg g−1 from the solution at pH 7 and 192.8 mg g−1 from the fermentation liquid at pH 9. The increase of ionic strength (0–0.1 mol L−1 NaNO3) reduced P removal efficiency from 98.53% to 93.01% in the synthetic solution but had no significant impact on P removal from the fermentation liquid. Precipitation of MgHPO4 and Mg(H2PO4)2 (76.5%), ligand exchange (18.0%), and electrostatic attraction (5.5%) were the potential mechanisms for P sorption from the synthetic solution, while struvite formation (57.6%) and ligand exchange (42.2%) governed the sorption of P from the kitchen waste fermentation liquid. Compared to previously reported MgO-biochar composites, MTC had a lower P sorption capacity in phosphate solution but a higher P sorption capacity in fermentation liquid. Therefore, the studied MTC could be used as an effective candidate for the removal of P from aqueous environments, and especially from the fermentation liquids. In the future, it will be necessary to systematically compare the performance of metal-biochar composites with different metal oxide crystal morphology for P removal from different types of wastewater.
Graphical Abstract
Collapse
|
18
|
Patel PK, Pandey LM, Uppaluri RV. Adsorptive removal of Zn, Fe, and Pb from Zn dominant simulated industrial wastewater solution using polyvinyl alcohol grafted chitosan variant resins. CHEMICAL ENGINEERING JOURNAL 2023; 459:141563. [DOI: 10.1016/j.cej.2023.141563] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
19
|
Wang H, Shao T, Zhou Y, Long X, Rengel Z. The effect of biochar prepared at different pyrolysis temperatures on microbially driven conversion and retention of nitrogen during composting. Heliyon 2023; 9:e13698. [PMID: 36873514 PMCID: PMC9976328 DOI: 10.1016/j.heliyon.2023.e13698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Aerobic composting is one of the most economical ways to produce organic fertilizer from agricultural wastes. In this research, we independently developed a simple composting simulation reactor. The effects of biochar pyrolysised at different pyrolysis temperatures (B1-450 °C; B2-550 °C; and B3-650 °C) on nitrogen conversion (Total nitrogen (TN), ammonium nitrogen (NH4 +-N), nitrate nitrogen (NO3 --N), cumulative amount of ammonia (CEA) and nitrous oxide (CEN) emission, nitrogen loss rate (NLR), etc.) and functional microbial community (cbbL, cbbM and nifH) structure in the composting system were studied. Results showed that the addition of biochar significantly improved the efficiency of composting, increased the NO3 --N concentration and reduced the NLR (%) in the composting system (B3 (31.4 ± 2.73)<B2=B1 (41.7 ± 3.29)<B0 (54.5 ± 3.34), p ≤ 0.05), while the loss rate of nitrogen positively correlated with compost pH. Denitrifying bacterial genera such as Pseudomonas, Alcaligenes, Paracoccus, Bacillus, Citrobacter, Mesorhizobium, Thiobacillus and Rhodococcus in this study was an important reason for nitrogen loss during composting, and the abundance of autotrophic microorganisms (such as Sulfuritalea, Hydrogenophaga, Thiobacillus, Thiomonas and Candidatus_Thioglobus) in treatments with biochar (B1, B2 and B3) were higher than that in B0. Besides, the community structure in the treatments B2 and B3 was similar at the end of composting and clearly distinguished from that in B1. Moreover, the five functions predicted by OTUs in this study with the highest proportions were chemoheterotrophy, nitrate reduction, fermentation, aerobic chemoheterotrophy and nitrogen respiration. The study provided a theoretical basis for the application of biochar to improve the compost-related processes.
Collapse
Affiliation(s)
- Haihou Wang
- Suzhou Academy of Agricultural Sciences, Institution of Agricultural Sciences Taihu Lake District, Suzhou, 215155, China.,National Soil Quality Observation and Experimental Station in Xiangcheng, Suzhou, 215131, China
| | - Tianyun Shao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yujie Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaohua Long
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zed Rengel
- Soil Science and Plant Nutrition, UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.,Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, Split, Croatia
| |
Collapse
|
20
|
Marcińczyk M, Krasucka P, Duan W, Pan B, Siatecka A, Oleszczuk P. Ecotoxicological characterization of engineered biochars produced from different feedstock and temperatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160640. [PMID: 36464053 DOI: 10.1016/j.scitotenv.2022.160640] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Biochar (BC) engineering, which has recently gained a lot of interest, allows designing the functional materials. BC modification improves the properties of pristine biochar, especially in terms of adsorption parameters. An interesting type of modification is the introduction of metals into the BC's structure. There is a knowledge gap regarding the effects of modified BC (e.g., BC-Mg, BC-Zn) on organisms. The aim of this study was the ecotoxicological evaluation of BC-Mg and BC-Zn composites, received under diverse conditions from willow or sewage sludge at 500 or 700 °C. The ecotoxicological tests with bacteria Vibrio fischeri (V. fischeri) and invertebrates Folsomia candida (F. candida) were applied to determine the toxicity of BC. The content of toxic substances (e.g., polycyclic aromatic hydrocarbons (PAHs), heavy metals (HMs), environmentally persistent free radicals (EPFRs)) in BC were also determined and compared with ecotoxicological parameters. The ecotoxicity of studied BCs depends on many variables: feedstock type, pyrolysis temperature and the modification type. The Zn and Mg modification reduced (from 28 to 63 %) the total Ʃ16 PAHs content in willow-derived BCs while in SL-derived BCs the total Ʃ16 PAHs content was even 1.5-3 times higher compared to pristine BCs. The Zn modified willow-derived BCs affected positively on F. candida reproduction but showed inhibition of luminescence V. fischeri. BC-Mg exhibited harmful effect to F. candida. The ecotoxicological assessment carried out sheds light on the potential toxicity of BC-Zn and BC-Mg composites, which are widely used in the removal of heavy metals, pharmaceuticals, dyes from waters and soils.
Collapse
Affiliation(s)
- Marta Marcińczyk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland
| | - Patrycja Krasucka
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland
| | - Wenyan Duan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Bo Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Anna Siatecka
- Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences, 15 Akademicka Street, 20-950 Lublin, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland.
| |
Collapse
|
21
|
Li R, Wang Q, Qu G, Zhang Z, Wang H. Green utilization of organic waste resource. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8899-8901. [PMID: 36609967 DOI: 10.1007/s11356-022-25127-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, Guangdong, China.
| |
Collapse
|