Barry A, Oualkacha K, Charpentier A. A new GEE method to account for heteroscedasticity using asymmetric least-square regressions.
J Appl Stat 2021;
49:3564-3590. [PMID:
36246864 PMCID:
PMC9559327 DOI:
10.1080/02664763.2021.1957789]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
Generalized estimating equations ( G E E ) are widely used to analyze longitudinal data; however, they are not appropriate for heteroscedastic data, because they only estimate regressor effects on the mean response - and therefore do not account for data heterogeneity. Here, we combine the G E E with the asymmetric least squares (expectile) regression to derive a new class of estimators, which we call generalized expectile estimating equations ( G E E E ) . The G E E E model estimates regressor effects on the expectiles of the response distribution, which provides a detailed view of regressor effects on the entire response distribution. In addition to capturing data heteroscedasticity, the GEEE extends the various working correlation structures to account for within-subject dependence. We derive the asymptotic properties of the G E E E estimators and propose a robust estimator of its covariance matrix for inference (see our R package, github.com/AmBarry/expectgee). Our simulations show that the GEEE estimator is non-biased and efficient, and our real data analysis shows it captures heteroscedasticity.
Collapse