1
|
Goss K, Horwitz EM. Single-cell multiomics to advance cell therapy. Cytotherapy 2025; 27:137-145. [PMID: 39530970 DOI: 10.1016/j.jcyt.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Single-cell RNA-sequencing (scRNAseq) was first introduced in 2009 and has evolved with many technological advancements over the last decade. Not only are there several scRNAseq platforms differing in many aspects, but there are also a large number of computational pipelines available for downstream analyses which are being developed at an exponential rate. Such computational data appear in many scientific publications in virtually every field of study; thus, investigators should be able to understand and interpret data in this rapidly evolving field. Here, we discuss key differences in scRNAseq platforms, crucial steps in scRNAseq experiments, standard downstream analyses and introduce newly developed multimodal approaches. We then discuss how single-cell omics has been applied to advance the field of cell therapy.
Collapse
Affiliation(s)
- Kyndal Goss
- Marcus Center for Advanced Cellular Therapy, Children's Healthcare of Atlanta, Atlanta, Georgia, USA; Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA; Graduate Division of Biology and Biomedical Sciences, Emory University Laney Graduate School, Atlanta, Georgia, USA
| | - Edwin M Horwitz
- Marcus Center for Advanced Cellular Therapy, Children's Healthcare of Atlanta, Atlanta, Georgia, USA; Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Division of Biology and Biomedical Sciences, Emory University Laney Graduate School, Atlanta, Georgia, USA.
| |
Collapse
|
2
|
Liu C, Hong T, Yu L, Chen Y, Dong X, Ren Z. Single-nucleus multiomics unravels the genetic mechanisms underlying musk secretion in Chinese forest musk deer (Moschus berezovskii). Int J Biol Macromol 2024; 279:135050. [PMID: 39214228 DOI: 10.1016/j.ijbiomac.2024.135050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Musk secreted by the musk glands in male forest musk deer (FMD; Moschus berezovskii) is highly valued for its pharmaceutical and perfumery applications. However, the regulatory mechanisms underlying musk secretion are not well understood. This study aimed to investigate the genes and transcription factors involved in musk secretion across different periods and ages. We analyzed the musk glands of adult male FMD during the non-secretory and secretory periods, as well as juvenile and adult male FMD during the secretory period, using single-cell multiome ATAC+gene expression technique. Our analysis identified 13 cell types, including acinar cells of Types 1 and 2. Chromatin accessibility analysis and gene expression data confirmed that the genes Map3k2, Hsd17b12, and Jun are critical for musk secretion. Additionally, EHF, NR4A2, and FOXO1 proteins play crucial regulatory roles. Weighted gene co-expression network analysis (WGCNA) highlighted the importance of GnRH signaling pathway in musk secretion. Gene set enrichment analysis (GSEA) showed that the steroid hormone biosynthesis pathway is notably enriched in acinar cells. Furthermore, intercellular communication appears to influence both the initiation and maintenance of musk secretion. These findings provide valuable insights into the molecular pathways of musk secretion in FMD, offering potential avenues for increasing musk production and developing treatment for inflammation and tumors.
Collapse
Affiliation(s)
- Chenmiao Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tingting Hong
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lin Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuan Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xianggui Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Zhanjun Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
3
|
Rachid Zaim S, Pebworth MP, McGrath I, Okada L, Weiss M, Reading J, Czartoski JL, Torgerson TR, McElrath MJ, Bumol TF, Skene PJ, Li XJ. MOCHA's advanced statistical modeling of scATAC-seq data enables functional genomic inference in large human cohorts. Nat Commun 2024; 15:6828. [PMID: 39122670 PMCID: PMC11316085 DOI: 10.1038/s41467-024-50612-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/13/2024] [Indexed: 08/12/2024] Open
Abstract
Single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) is being increasingly used to study gene regulation. However, major analytical gaps limit its utility in studying gene regulatory programs in complex diseases. In response, MOCHA (Model-based single cell Open CHromatin Analysis) presents major advances over existing analysis tools, including: 1) improving identification of sample-specific open chromatin, 2) statistical modeling of technical drop-out with zero-inflated methods, 3) mitigation of false positives in single cell analysis, 4) identification of alternative transcription-starting-site regulation, and 5) modules for inferring temporal gene regulatory networks from longitudinal data. These advances, in addition to open chromatin analyses, provide a robust framework after quality control and cell labeling to study gene regulatory programs in human disease. We benchmark MOCHA with four state-of-the-art tools to demonstrate its advances. We also construct cross-sectional and longitudinal gene regulatory networks, identifying potential mechanisms of COVID-19 response. MOCHA provides researchers with a robust analytical tool for functional genomic inference from scATAC-seq data.
Collapse
Affiliation(s)
| | | | | | - Lauren Okada
- Allen Institute for Immunology, Seattle, WA, USA
| | - Morgan Weiss
- Allen Institute for Immunology, Seattle, WA, USA
| | | | - Julie L Czartoski
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | - Xiao-Jun Li
- Allen Institute for Immunology, Seattle, WA, USA.
| |
Collapse
|
4
|
Kuraz Abebe B, Wang J, Guo J, Wang H, Li A, Zan L. A review of the role of epigenetic studies for intramuscular fat deposition in beef cattle. Gene 2024; 908:148295. [PMID: 38387707 DOI: 10.1016/j.gene.2024.148295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/23/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Intramuscular fat (IMF) deposition profoundly influences meat quality and economic value in beef cattle production. Meanwhile, contemporary developments in epigenetics have opened new outlooks for understanding the molecular basics of IMF regulation, and it has become a key area of research for world scholars. Therefore, the aim of this paper was to provide insight and synthesis into the intricate relationship between epigenetic mechanisms and IMF deposition in beef cattle. The methodology involves a thorough analysis of existing literature, including pertinent books, academic journals, and online resources, to provide a comprehensive overview of the role of epigenetic studies in IMF deposition in beef cattle. This review summarizes the contemporary studies in epigenetic mechanisms in IMF regulation, high-resolution epigenomic mapping, single-cell epigenomics, multi-omics integration, epigenome editing approaches, longitudinal studies in cattle growth, environmental epigenetics, machine learning in epigenetics, ethical and regulatory considerations, and translation to industry practices from perspectives of IMF deposition in beef cattle. Moreover, this paper highlights DNA methylation, histone modifications, acetylation, phosphorylation, ubiquitylation, non-coding RNAs, DNA hydroxymethylation, epigenetic readers, writers, and erasers, chromatin immunoprecipitation followed by sequencing, whole genome bisulfite sequencing, epigenome-wide association studies, and their profound impact on the expression of crucial genes governing adipogenesis and lipid metabolism. Nutrition and stress also have significant influences on epigenetic modifications and IMF deposition. The key findings underscore the pivotal role of epigenetic studies in understanding and enhancing IMF deposition in beef cattle, with implications for precision livestock farming and ethical livestock management. In conclusion, this review highlights the crucial significance of epigenetic pathways and environmental factors in affecting IMF deposition in beef cattle, providing insightful information for improving the economics and meat quality of cattle production.
Collapse
Affiliation(s)
- Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; Department of Animal Science, Werabe University, P.O. Box 46, Werabe, Ethiopia
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
5
|
Shu C, Street K, Breton CV, Bastain TM, Wilson ML. A review of single-cell transcriptomics and epigenomics studies in maternal and child health. Epigenomics 2024; 16:775-793. [PMID: 38709139 PMCID: PMC11318716 DOI: 10.1080/17501911.2024.2343276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
Single-cell sequencing technologies enhance our understanding of cellular dynamics throughout pregnancy. We outlined the workflow of single-cell sequencing techniques and reviewed single-cell studies in maternal and child health. We conducted a literature review of single cell studies on maternal and child health using PubMed. We summarized the findings from 16 single-cell atlases of the human and mammalian placenta across gestational stages and 31 single-cell studies on maternal exposures and complications including infection, obesity, diet, gestational diabetes, pre-eclampsia, environmental exposure and preterm birth. Single-cell studies provides insights on novel cell types in placenta and cell type-specific marks associated with maternal exposures and complications.
Collapse
Affiliation(s)
- Chang Shu
- Center for Genetic Epidemiology, Division of Epidemiology & Genetics, Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Kelly Street
- Division of Biostatistics, Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Carrie V Breton
- Division of Environmental Health, Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Theresa M Bastain
- Division of Environmental Health, Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Melissa L Wilson
- Division of Disease Prevention, Policy, & Global Health, Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles,CA USA
| |
Collapse
|
6
|
Abstract
Epigenetics has transformed our understanding of the molecular basis of complex diseases, including cardiovascular and metabolic disorders. This review offers a comprehensive overview of the current state of knowledge on epigenetic processes implicated in cardiovascular and metabolic diseases, highlighting the potential of DNA methylation as a precision medicine biomarker and examining the impact of social determinants of health, gut bacterial epigenomics, noncoding RNA, and epitranscriptomics on disease development and progression. We discuss challenges and barriers to advancing cardiometabolic epigenetics research, along with the opportunities for novel preventive strategies, targeted therapies, and personalized medicine approaches that may arise from a better understanding of epigenetic processes. Emerging technologies, such as single-cell sequencing and epigenetic editing, hold the potential to further enhance our ability to dissect the complex interplay between genetic, environmental, and lifestyle factors. To translate research findings into clinical practice, interdisciplinary collaborations, technical and ethical considerations, and accessibility of resources and knowledge are crucial. Ultimately, the field of epigenetics has the potential to revolutionize the way we approach cardiovascular and metabolic diseases, paving the way for precision medicine and personalized health care, and improving the lives of millions of individuals worldwide affected by these conditions.
Collapse
Affiliation(s)
- Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, New York (A.A.B.)
| | - José Ordovás
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, at Tufts University, Boston, MA (J.O.)
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain (J.O.)
- Consortium CIBERObn, Instituto de Salud Carlos III (ISCIII), Madrid, Spain (J.O.)
| |
Collapse
|