1
|
Cui Y, Xiao Y, Wang Z, Ji P, Zhang C, Li Y, Fang J, Yu X. Microbial community structure and functional traits involved in the adaptation of culturable bacteria within the gut of amphipods from the deepest ocean. Microbiol Spectr 2025; 13:e0072324. [PMID: 39655934 PMCID: PMC11705852 DOI: 10.1128/spectrum.00723-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025] Open
Abstract
The Hadal Zone is acknowledged for its extreme environmental conditions, especially high hydrostatic pressures. The dominant scavengers in the Hadal Zone, Hadal amphipods, fulfill vital roles in the Hadal food web and ecological niches. However, research on the gut microbiota of amphipods related to ecological functions and environmental adaptation is still limited. Here, we used 16S rRNA sequencing technology and a culture-dependent method to analyze the composition of the gut microbiota in Amphipoda living in the Mariana Trench. A total of 16 bacterial genera were identified. Among them, Firmicutes and Proteobacteria were the predominant phyla. The adaptability of gut probiotics to the environment was investigated. Pediococcus pentosaceus XY62 was picked up as the representative strain to elucidate the ecological functions of gut microbes in amphipods. The ProBio database and the K-B agar diffusion method indicated that P. pentosaceus XY62 exhibited the highest probiotic activity compared with all other isolated strains. Specific metabolic pathways and transporter systems that contribute to a range of environmental adaptation strategies have been revealed by genomic analysis of P. pentosaceus XY62. The environmental response genes and a specialized KDP transport system allow it to adapt to the challenging conditions of the Hadal Zone. In addition, the presence of antibacterial compounds and antibiotic resistance genes, as well as the ability to form a biofilm, facilitated the successful colonization of P. pentosaceus XY62 in the gut environment. IMPORTANCE Amphipods are widely distributed in the Hadal trenches, and the study of their gut microbes has garnered considerable scientific interest. Our research breaks away from traditional omics approaches, innovatively combining sequencing technologies with culture-dependent methods to analyze the gut microbiome structure of amphipods from the Mariana Trench. This not only complements the current omics-dominated field but also paves the way for future resource development of extreme microbes. Furthermore, by conducting genomic analyses and functional validations on a representative strain, we have uncovered its probiotic effects and strategies for adapting to extreme environments. This provides new insights into the theoretical study of the ecological functions of deep-sea bacteria. Overall, our findings offer a fresh perspective on the microbial community structure and environmental adaptation strategies of gut microorganisms in the Hadal Zone.
Collapse
Affiliation(s)
- Yukun Cui
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Yu Xiao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Zhuo Wang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Paiyao Ji
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Changhao Zhang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Yongqi Li
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Xi Yu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
2
|
Li S, Li C, Pei J, Liu R, Fang J, Wei Y, He Y, Li S, Feng Q, Zhang C, Guo T, Jiang Y, Hu Y, Jiang Z, Shi L, Dong Y. Tepidibacillus marianensis sp. nov., a novel heterotrophic iron-reducing bacterium isolated from Mariana Trench sediment. Int J Syst Evol Microbiol 2024; 74. [PMID: 38913036 DOI: 10.1099/ijsem.0.006438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
A novel chemoheterotrophic iron-reducing micro-organism, designated as strain LSZ-M11000T, was isolated from sediment of the Marianas Trench. Phylogenetic analysis based on the 16S rRNA gene revealed that strain LSZ-M11000T belonged to genus Tepidibacillus, with 97 % identity to that of Tepidibacillus fermentans STGHT, a mesophilic bacterium isolated from the Severo-Stavropolskoye underground gas storage facility in Russia. The polar lipid profile of strain LSZ-M11000T consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, as well as other unidentified phospholipids and lipids. The major fatty acids were C16 : 0 (28.4 %), C18 : 0 (15.8 %), iso-C15 : 0 (12.9 %), and anteiso-C15 : 0 (12.0 %). Strain LSZ-M11000T had no menaquinone. Genome sequencing revealed that the genome size of strain LSZ-M11000T was 2.97 Mb and the DNA G+C content was 37.9 mol%. The average nucleotide identity values between strain LSZ-M11000T and its close phylogenetic relatives, Tepidibacillus fermentans STGHT and Tepidibacillus decaturensis Z9T, were 76.4 and 72.6 %, respectively. The corresponding DNA-DNA hybridization estimates were 20.9 and 23.4 %, respectively. Cells of strain LSZ-M11000T were rod-shaped (1.0-1.5×0.3-0.5 µm). Using pyruvate as an electron donor, it was capable of reducing KMnO4, MnO2, As(V), NaNO3, NaNO2, Na2SO4, Na2S2O3, and K2Cr2O7. Based on phenotypic, genotypic, and phylogenetic evidence, strain LSZ-M11000T is proposed to be a novel strain of the genus Tepidibacillus, for which the name Tepdibacillus marianensis is proposed. The type strain is LSZ-M11000T (=CCAM 1008T=JCM 39431T).
Collapse
Affiliation(s)
- Shuyi Li
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Chenxi Li
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Jiahao Pei
- Hadal Science and Technology Research Center, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Rulong Liu
- Hadal Science and Technology Research Center, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Jiasong Fang
- Hadal Science and Technology Research Center, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Yuli Wei
- Hadal Science and Technology Research Center, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Yu He
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Shuzhen Li
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Qi Feng
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Chenxi Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Tianci Guo
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Yongguang Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Yidan Hu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Zhou Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Liang Shi
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan, 430074, PR China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, Wuhan, 430074, PR China
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan, 430074, PR China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, Wuhan, 430074, PR China
| |
Collapse
|
3
|
Wei Z, Zhao L, Wang S, Chang L, Shi J, Kong X, Li M, Lin J, Zhang W, Bao Z, Ding W, Hu X. Paralytic shellfish toxins producing dinoflagellates cause dysbacteriosis in scallop gut microbial biofilms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116146. [PMID: 38412634 DOI: 10.1016/j.ecoenv.2024.116146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/05/2024] [Accepted: 02/22/2024] [Indexed: 02/29/2024]
Abstract
Filter-feeding bivalves could accumulate paralytic shellfish toxins (PSTs) produced by harmful dinoflagellates through diet. Despite that bivalves are resistant to these neurotoxins due to possessing PST-resistant sodium channel, exposure to PSTs-producing dinoflagellates impair bivalve survival. We hypothesized that ingesting PSTs-producing dinoflagellates may influence the gut microbiota, and then the health of bivalves. To test this idea, we compared the gut microbiota of the scallop Patinopecten yessoensis, after feeding with PST-producing or non-toxic dinoflagellates. Exposure to PSTs-producing dinoflagellates resulted in a decline of gut microbial diversity and a disturbance of community structure, accompanied by a significant increase in the abundance and richness of pathogenic bacteria, represented by Vibrio. Moreover, network analysis demonstrated extensive positive correlations between pathogenic bacteria abundances and PSTs concentrations in the digestive glands of the scallops. Furthermore, isolation of a dominant Vibrio strain and its genomic analysis revealed a variety of virulence factors, including the tolC outer membrane exporter, which were expressed in the gut microbiota. Finally, the infection experiment demonstrated scallop mortality caused by the isolated Vibrio strain; further, the pathogenicity of this Vibrio strain was attenuated by a mutation in the tolC gene. Together, these findings demonstrated that the PSTs may affect gut microbiota via direct and taxa-specific interactions with opportunistic pathogens, which proliferate after transition from seawater to the gut environment. The present study has revealed novel mechanisms towards deciphering the puzzles in environmental disturbances-caused death of an important aquaculture species.
Collapse
Affiliation(s)
- Zhongcheng Wei
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Liang Zhao
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, China
| | - Shuaitao Wang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Lirong Chang
- Weihai Changqing Ocean Science & Technology Co. Ltd, Rongcheng, China
| | - Jiaoxia Shi
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Xiangfu Kong
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Moli Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Jinshui Lin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yanan University, Yanan, China
| | - Weipeng Zhang
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Wei Ding
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
4
|
Gao N, Shu Y, Wang Y, Sun M, Wei Z, Song C, Zhang W, Sun Y, Hu X, Bao Z, Ding W. Acute Ammonia Causes Pathogenic Dysbiosis of Shrimp Gut Biofilms. Int J Mol Sci 2024; 25:2614. [PMID: 38473861 PMCID: PMC10932075 DOI: 10.3390/ijms25052614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Acute ammonia exposure has detrimental effects on shrimp, but the underlying mechanisms remain to be fully explored. In the present study, we investigated the impact of acute ammonia exposure on the gut microbiota of the white shrimp Litopenaeus vannamei and its association with shrimp mortality. Exposure to a lethal concentration of ammonia for 48 h resulted in increased mortality in L. vannamei, with severe damage to the hepatopancreas. Ammonia exposure led to a significant decrease in gut microbial diversity, along with the loss of beneficial bacterial taxa and the proliferation of pathogenic Vibrio strains. A phenotypic analysis revealed a transition from the dominance of aerobic to facultative anaerobic strains due to ammonia exposure. A functional analysis revealed that ammonia exposure led to an enrichment of genes related to biofilm formation, host colonization, and virulence pathogenicity. A species-level analysis and experiments suggest the key role of a Vibrio harveyi strain in causing shrimp disease and specificity under distinct environments. These findings provide new information on the mechanism of shrimp disease under environmental changes.
Collapse
Affiliation(s)
- Ning Gao
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China; (N.G.); (Y.S.); (Y.W.); (Y.S.)
- Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.W.); (C.S.)
| | - Yi Shu
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China; (N.G.); (Y.S.); (Y.W.); (Y.S.)
- Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.W.); (C.S.)
| | - Yongming Wang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China; (N.G.); (Y.S.); (Y.W.); (Y.S.)
- Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.W.); (C.S.)
| | - Meng Sun
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (M.S.); (W.Z.)
| | - Zhongcheng Wei
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.W.); (C.S.)
| | - Chenxi Song
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.W.); (C.S.)
| | - Weipeng Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (M.S.); (W.Z.)
| | - Yue Sun
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China; (N.G.); (Y.S.); (Y.W.); (Y.S.)
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.W.); (C.S.)
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.W.); (C.S.)
| | - Zhenmin Bao
- Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.W.); (C.S.)
| | - Wei Ding
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.W.); (C.S.)
| |
Collapse
|
5
|
Liu J, Li DW, He X, Liu R, Cheng H, Su C, Chen M, Wang Y, Zhao Z, Xu H, Cheng Z, Wang Z, Pedentchouk N, Lea-Smith DJ, Todd JD, Liu X, Zhao M, Zhang XH. A unique subseafloor microbiosphere in the Mariana Trench driven by episodic sedimentation. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:168-181. [PMID: 38433963 PMCID: PMC10902237 DOI: 10.1007/s42995-023-00212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/23/2023] [Indexed: 03/05/2024]
Abstract
Hadal trenches are characterized by enhanced and infrequent high-rate episodic sedimentation events that likely introduce not only labile organic carbon and key nutrients but also new microbes that significantly alter the subseafloor microbiosphere. Currently, the role of high-rate episodic sedimentation in controlling the composition of the hadal subseafloor microbiosphere is unknown. Here, analyses of carbon isotope composition in a ~ 750 cm long sediment core from the Challenger Deep revealed noncontinuous deposition, with anomalous 14C ages likely caused by seismically driven mass transport and the funneling effect of trench geomorphology. Microbial community composition and diverse enzyme activities in the upper ~ 27 cm differed from those at lower depths, probably due to sudden sediment deposition and differences in redox condition and organic matter availability. At lower depths, microbial population numbers, and composition remained relatively constant, except at some discrete depths with altered enzyme activity and microbial phyla abundance, possibly due to additional sudden sedimentation events of different magnitude. Evidence is provided of a unique role for high-rate episodic sedimentation events in controlling the subsurface microbiosphere in Earth's deepest ocean floor and highlight the need to perform thorough analysis over a large depth range to characterize hadal benthic populations. Such depositional processes are likely crucial in shaping deep-water geochemical environments and thereby the deep subseafloor biosphere. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00212-y.
Collapse
Affiliation(s)
- Jiwen Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Da-Wei Li
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237 China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100 China
| | - Xinxin He
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Ronghua Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Haojin Cheng
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Chenglong Su
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100 China
| | - Mengna Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100 China
| | - Yonghong Wang
- Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education/College of Marine Geosciences, Ocean University of China, Qingdao, 266100 China
| | - Zhongsheng Zhao
- Key Laboratory of Physical Oceanography, Ministry of Education/Research Vessel Centre, Ocean University of China, Qingdao, 266100 China
| | - Hanyue Xu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100 China
| | - Zhangyu Cheng
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100 China
| | - Zicheng Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100 China
| | - Nikolai Pedentchouk
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ UK
| | - David J. Lea-Smith
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ UK
| | - Jonathan D. Todd
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ UK
| | - Xiaoshou Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Meixun Zhao
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237 China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100 China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
6
|
Gorrasi S, Franzetti A, Brandt A, Minzlaff U, Pasqualetti M, Fenice M. Insights into the prokaryotic communities of the abyssal-hadal benthic-boundary layer of the Kuril Kamchatka Trench. ENVIRONMENTAL MICROBIOME 2023; 18:67. [PMID: 37533108 PMCID: PMC10398949 DOI: 10.1186/s40793-023-00522-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND The Kuril-Kamchatka Trench (maximum depth 9604 m), located in the NW Pacific Ocean, is among the top seven deepest hadal trenches. The work aimed to investigate the unexplored abyssal-hadal prokaryotic communities of this fascinating, but underrated environment. RESULTS As for the bacterial communities, we found that Proteobacteria (56.1-74.5%), Bacteroidetes (6.5-19.1%), and Actinobacteria (0.9-16.1%) were the most represented bacterial phyla over all samples. Thaumarchaeota (52.9-91.1%) was the most abundant phylum in the archaeal communities. The archaeal diversity was highly represented by the ammonia-oxidizing Nitrosopumilus, and the potential hydrocarbon-degrading bacteria Acinetobacter, Zhongshania, and Colwellia were the main bacterial genera. The α-diversity analysis evidenced that both prokaryotic communities were characterized by low evenness, as indicated by the high Gini index values (> 0.9). The β-diversity analysis (Redundancy Analysis) indicated that, as expected, the depth significantly affected the structure of the prokaryotic communities. The co-occurrence network revealed seven prokaryotic groups that covaried across the abyssal-hadal zone of the Kuril-Kamchatka Trench. Among them, the main group included the most abundant archaeal and bacterial OTUs (Nitrosopumilus OTU A2 and OTU A1; Acinetobacter OTU B1), which were ubiquitous across the trench. CONCLUSIONS This manuscript represents the first attempt to characterize the prokaryotic communities of the KKT abyssal-hadal zone. Our results reveal that the most abundant prokaryotes harbored by the abyssal-hadal zone of Kuril-Kamchatka Trench were chemolithotrophic archaea and heterotrophic bacteria, which did not show a distinctive pattern distribution according to depth. In particular, Acinetobacter, Zhongshania, and Colwellia (potential hydrocarbon degraders) were the main bacterial genera, and Nitrosopumilus (ammonia oxidizer) was the dominant representative of the archaeal diversity.
Collapse
Affiliation(s)
- Susanna Gorrasi
- Laboratory of Microbiology, Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy.
| | - Andrea Franzetti
- Laboratory of Microbiology, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, 20126, Italy
| | - Angelika Brandt
- Senckenberg Research Institute and Natural History Museum, 60325, Frankfurt am Main, Germany
- Institute of Ecology, Diversity and Evolution, Goethe University, 60438, Frankfurt am Main, Germany
| | - Ulrike Minzlaff
- Institute of Ecology, Diversity and Evolution, Goethe University, 60438, Frankfurt am Main, Germany
| | - Marcella Pasqualetti
- Laboratory of Ecology of Marine Fungi - CoNISMa, Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy
| | - Massimiliano Fenice
- Laboratory of Microbiology, Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy.
- Laboratory of Applied Marine Microbiology - CoNISMa, Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy.
| |
Collapse
|
7
|
Lu J, Shu Y, Zhang H, Zhang S, Zhu C, Ding W, Zhang W. The Landscape of Global Ocean Microbiome: From Bacterioplankton to Biofilms. Int J Mol Sci 2023; 24:6491. [PMID: 37047466 PMCID: PMC10095273 DOI: 10.3390/ijms24076491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
The development of metagenomics has opened up a new era in the study of marine microbiota, which play important roles in biogeochemical cycles. In recent years, the global ocean sampling expeditions have spurred this research field toward a deeper understanding of the microbial diversities and functions spanning various lifestyles, planktonic (free-living) or sessile (biofilm-associated). In this review, we deliver a comprehensive summary of marine microbiome datasets generated in global ocean expeditions conducted over the last 20 years, including the Sorcerer II GOS Expedition, the Tara Oceans project, the bioGEOTRACES project, the Micro B3 project, the Bio-GO-SHIP project, and the Marine Biofilms. These datasets have revealed unprecedented insights into the microscopic life in our oceans and led to the publication of world-leading research. We also note the progress of metatranscriptomics and metaproteomics, which are confined to local marine microbiota. Furthermore, approaches to transforming the global ocean microbiome datasets are highlighted, and the state-of-the-art techniques that can be combined with data analyses, which can present fresh perspectives on marine molecular ecology and microbiology, are proposed.
Collapse
Affiliation(s)
- Jie Lu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
| | - Yi Shu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266100, China;
| | - Heng Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Shangxian Zhang
- Haide College, Ocean University of China, Qingdao 266100, China
| | - Chengrui Zhu
- Haide College, Ocean University of China, Qingdao 266100, China
| | - Wei Ding
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266100, China;
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Haide College, Ocean University of China, Qingdao 266100, China
| | - Weipeng Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Haide College, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
8
|
The Diversity of Deep-Sea Actinobacteria and Their Natural Products: An Epitome of Curiosity and Drug Discovery. DIVERSITY 2022. [DOI: 10.3390/d15010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bioprospecting of novel antibiotics has been the conventional norm of research fostered by researchers worldwide to combat drug resistance. With the exhaustion of incessant leads, the search for new chemical entities moves into uncharted territories such as the deep sea. The deep sea is a furthermost ecosystem with much untapped biodiversity thriving under extreme conditions. Accordingly, it also encompasses a vast pool of ancient natural products. Actinobacteria are frequently regarded as the bacteria of research interest due to their inherent antibiotic-producing capabilities. These interesting groups of bacteria occupy diverse ecological habitats including a multitude of different deep-sea habitats. In this review, we provide a recent update on the novel species and compounds of actinomycetes from the deep-sea environments within a period of 2016–2022. Within this period, a total of 24 new species of actinomycetes were discovered and characterized as well as 101 new compounds of various biological activities. The microbial communities of various deep-sea ecosystems are the emerging frontiers of bioprospecting.
Collapse
|