1
|
Li L, Lu M, Guo L, Zhang X, Liu Q, Zhang M, Gao J, Xu M, Lu Y, Zhang F, Li Y, Zhang R, Liu X, Pan S, Zhang X, Li Z, Chen Y, Su X, Zhang N, Guo W, Yang T, Chen J, Qin Y, Zhang Z, Cui W, Yu L, Gu Y, Yang H, Xu X, Wang J, Burns CE, Burns CG, Han K, Zhao L, Fan G, Su Y. An organ-wide spatiotemporal transcriptomic and cellular atlas of the regenerating zebrafish heart. Nat Commun 2025; 16:3716. [PMID: 40253397 PMCID: PMC12009352 DOI: 10.1038/s41467-025-59070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 04/10/2025] [Indexed: 04/21/2025] Open
Abstract
Adult zebrafish robustly regenerate injured hearts through a complex orchestration of molecular and cellular activities. However, this remarkable process, which is largely non-existent in humans, remains incompletely understood. Here, we utilize integrated spatial transcriptomics (Stereo-seq) and single-cell RNA-sequencing (scRNA-seq) to generate a spatially-resolved molecular and cellular atlas of regenerating zebrafish heart across eight stages. We characterize the cascade of cardiomyocyte cell states responsible for producing regenerated myocardium and explore a potential role for tpm4a in cardiomyocyte re-differentiation. Moreover, we uncover the activation of ifrd1 and atp6ap2 genes as a unique feature of regenerative hearts. Lastly, we reconstruct a 4D "virtual regenerating heart" comprising 569,896 cells/spots derived from 36 scRNA-seq libraries and 224 Stereo-seq slices. Our comprehensive atlas serves as a valuable resource to the cardiovascular and regeneration scientific communities and their ongoing efforts to understand the molecular and cellular mechanisms underlying vertebrate heart regeneration.
Collapse
Affiliation(s)
- Lei Li
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, 518083, China
| | - Meina Lu
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Lidong Guo
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuejiao Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Qun Liu
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
- Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Meiling Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Junying Gao
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Mengyang Xu
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, 518083, China
| | - Yijian Lu
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Fang Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yao Li
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Ruihua Zhang
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Xiawei Liu
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Shanshan Pan
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Xianghui Zhang
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Zhen Li
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Yadong Chen
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Xiaoshan Su
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
- Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Nannan Zhang
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Wenjie Guo
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen, 518120, China
| | - Jing Chen
- China National GeneBank, BGI Research, Shenzhen, 518120, China
| | - Yating Qin
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
- Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
| | | | - Wei Cui
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Lindong Yu
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Ying Gu
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, 518083, China
- BGI, Shenzhen, 518083, China
| | - Huanming Yang
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, 518083, China
- BGI, Shenzhen, 518083, China
| | - Xun Xu
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, 518083, China
- BGI, Shenzhen, 518083, China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Caroline E Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - C Geoffrey Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Kai Han
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China.
- Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark.
| | - Long Zhao
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- College of Fisheries, Ocean University of China, Qingdao, 266003, China.
| | - Guangyi Fan
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China.
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, 518083, China.
- BGI Research, Sanya, 572025, China.
- BGI Research, Hangzhou, 310030, China.
| | - Ying Su
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
2
|
Luo W, Zhang F, Zhao F, Fang Y, Zhao L, Su Y. Dual role of PpV in Drosophila crystal cell proliferation and survival. J Mol Cell Biol 2025; 16:mjae028. [PMID: 39085037 PMCID: PMC11927399 DOI: 10.1093/jmcb/mjae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/28/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024] Open
Abstract
Drosophila melanogaster crystal cells are a specialized type of blood cells for the innate immune process upon injury. Under normal conditions, crystal cells rarely proliferate and constitute a small proportion of fly blood cells. Notch signaling has been known to guide the cell fate determination of crystal cells and maintain their survival. Here, we reported that protein phosphatase V (PpV), the unique catalytic subunit of protein phosphatase 6 in Drosophila, is a novel regulator of crystal cell proliferation and integrity. We found that PpV proteins highly accumulated in crystal cells in the larval hematopoietic organ termed the lymph gland. Silencing PpV using RNA interference led to increased crystal cell proliferation in a Notch-independent manner and induced crystal cell rupture dependent on Notch signaling. Moreover, additive PpV prevented the rupture of crystal cells in lymph glands upon a needle injury, suggesting the involvement of PpV in wound healing. Altogether, our results indicated that PpV plays a dual role in lymph glands, preventing crystal cell proliferation to limit the cell number, as well as inhibiting crystal cell rupture to maintain their survival.
Collapse
Affiliation(s)
- Wang Luo
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Fang Zhang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Fangzhen Zhao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yang Fang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Long Zhao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Ying Su
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
3
|
Windfelder AG, Müller FHH, Mc Larney B, Hentschel M, Böhringer AC, von Bredow CR, Leinberger FH, Kampschulte M, Maier L, von Bredow YM, Flocke V, Merzendorfer H, Krombach GA, Vilcinskas A, Grimm J, Trenczek TE, Flögel U. High-throughput screening of caterpillars as a platform to study host-microbe interactions and enteric immunity. Nat Commun 2022; 13:7216. [PMID: 36433960 PMCID: PMC9700799 DOI: 10.1038/s41467-022-34865-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Mammalian models of human disease are expensive and subject to ethical restrictions. Here, we present an independent platform for high-throughput screening, using larvae of the tobacco hornworm Manduca sexta, combining diagnostic imaging modalities for a comprehensive characterization of aberrant phenotypes. For validation, we use bacterial/chemical-induced gut inflammation to generate a colitis-like phenotype and identify significant alterations in morphology, tissue properties, and intermediary metabolism, which aggravate with disease progression and can be rescued by antimicrobial treatment. In independent experiments, activation of the highly conserved NADPH oxidase DUOX, a key mediator of gut inflammation, leads to similar, dose-dependent alterations, which can be attenuated by pharmacological interventions. Furthermore, the developed platform could differentiate pathogens from mutualistic gastrointestinal bacteria broadening the scope of applications also to microbiomics and host-pathogen interactions. Overall, larvae-based screening can complement mammals in preclinical studies to explore innate immunity and host-pathogen interactions, thus representing a substantial contribution to improve mammalian welfare.
Collapse
Affiliation(s)
- Anton G Windfelder
- Institute of Zoology and Developmental Biology; Cellular Recognition and Defense Processes, Justus Liebig University Giessen, Giessen, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- Laboratory of Experimental Radiology, Justus Liebig University Giessen, Giessen, Germany
| | - Frank H H Müller
- Radiology and Nuclear Medicine Ludwigshafen, Ludwigshafen, Germany
| | - Benedict Mc Larney
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Anna Christina Böhringer
- Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Siegen, Germany
| | | | - Florian H Leinberger
- Institute of Zoology and Developmental Biology; Cellular Recognition and Defense Processes, Justus Liebig University Giessen, Giessen, Germany
| | - Marian Kampschulte
- Laboratory of Experimental Radiology, Justus Liebig University Giessen, Giessen, Germany
| | - Lorenz Maier
- Department of Nuclear Medicine, Inselspital Bern, Bern, Switzerland
| | - Yvette M von Bredow
- Institute of Zoology and Developmental Biology; Cellular Recognition and Defense Processes, Justus Liebig University Giessen, Giessen, Germany
| | - Vera Flocke
- Experimental Cardiovascular Imaging, Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hans Merzendorfer
- Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Siegen, Germany
| | - Gabriele A Krombach
- Department of Diagnostic and Interventional Radiology, University-Hospital Giessen, Giessen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- Institute for Insect Biotechnology, Department of Applied Entomology, Justus Liebig University Giessen, Giessen, Germany
| | - Jan Grimm
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pharmacology Department, Weill Cornell Medical College, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Weill Cornell Medical Center, New York, NY, USA
| | - Tina E Trenczek
- Institute of Zoology and Developmental Biology; Cellular Recognition and Defense Processes, Justus Liebig University Giessen, Giessen, Germany.
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|