1
|
Wang L, Wang Y, Li B, Zhang Y, Song S, Ding W, Xu D, Zhao Z. BMP6 regulates AMH expression via SMAD1/5/8 in goat ovarian granulosa cells. Theriogenology 2023; 197:167-176. [PMID: 36525856 DOI: 10.1016/j.theriogenology.2022.11.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Anti-Müllerian hormone (AMH) is produced by ovarian granulosa cells (GCs)and plays a major role in inhibiting the recruitment of primordial follicles and reducing the sensitivity of growing follicles to follicle-stimulating hormone (FSH). Bone morphogenetic protein 6 (BMP6) has similar spatiotemporal expression to AMH during follicular development, suggesting that BMP6 may regulate AMH expression. However, the specific mechanism by which BMP6 regulates AMH expression remains unclear. The objectives of this study were to examine the molecular pathway by which BMP6 regulates AMH expression. The results showed that BMP6 promoted the secretion and expression of AMH in goat ovarian GCs. Mechanistically, BMP6 upregulated the expression of sex-determining region Y-box 9 (SOX9) and GATA-binding factor 4 (GATA4), which was associated with the transcriptional initiation of AMH. AMH expression was significantly decreased by GATA4 knockdown. Moreover, BMP6 treatment promoted the phosphorylation of SMAD1/5/8, whereas inhibiting the SMAD1/5/8 signaling pathway significantly abolished BMP6-induced upregulation of AMH and GATA4 expression. Interestingly, the activation of SMAD1/5/8 alone did not affect the expression of AMH or GATA4. The results suggested that BMP6 upregulated GATA4 through the SMAD1/5/8 signaling pathway, which in turn promoted AMH expression.
Collapse
Affiliation(s)
- Lei Wang
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China
| | - Yukun Wang
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China
| | - Bijun Li
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China
| | - Yiyu Zhang
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China
| | - Shuaifei Song
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China
| | - Wenfei Ding
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China
| | - Dejun Xu
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China.
| | - Zhongquan Zhao
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China.
| |
Collapse
|
2
|
The Impact of Mother's Living Environment Exposure on Genome Damage, Immunological Status, and Sex Hormone Levels in Newborns. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17103402. [PMID: 32414150 PMCID: PMC7277460 DOI: 10.3390/ijerph17103402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/24/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Abstract
Background: The aim of this study was to compare for the first time IL-6 (Interleukin 6), testosterone (T) and estradiol (E) levels, their ratio (E/T), micronucleus (MN), and nuclear bridge (NB) frequency between newborns with regard to their mother’s residency and diet. Our results should enable an assessment of the possible environmental endocrine effects and interaction between biomarkers, pointing to possible associated health risks. Methods: Fifty full-term newborns of both sexes, whose mothers were healthy and not occupationally exposed to any known carcinogen, were analyzed. All of the mothers filled in a detailed questionnaire. Results: The results showed significantly higher levels of E in newborns of mothers with agricultural residency than those born by mothers with urban residency. Significantly, lower levels of E were measured in newborns of mothers who drank milk and carbonated beverages more frequently. Testosterone was significantly higher in boys of mothers with agricultural residency than from mothers with urban residency. Residence and other parameters had no impact on the difference in MN frequency. IL-6 levels were higher in newborns of mothers with agricultural residency. NB levels were significantly associated with E. A significant association between E levels and IL-6 was found. Conclusion: Our results were the first to show a significant impact of the mother’s agricultural residency and diet on their newborns’ sex hormone and IL-6 levels and their association.
Collapse
|