1
|
Wei Y, Shen X, Zhao X, He H, Zhang Y, Zhu Q, Yin H. Circular RNA circRPS19 promotes chicken granulosa cell proliferation and steroid hormone synthesis by interrupting the miR-218-5p/INHBB axis. Theriogenology 2024; 219:103-115. [PMID: 38422566 DOI: 10.1016/j.theriogenology.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Ovarian follicle development is an important physiological activity for females and makes great significance in maintaining female health and reproduction performance. The development of ovarian follicle is mainly affected by the granulosa cells (GCs), whose growth is regulated by a variety of factors. Here, we identified a novel circular RNA (circRNA) derived from the Ribosomal protein S19 (RPS19) gene, named circRPS19, which is differentially expressed during chicken ovarian follicle development. Further explorations identified that circRPS19 promotes GCs proliferation and steroid hormone synthesis. Furthermore, circRPS19 was found to target and regulate miR-218-5p through a competitive manner with endogenous RNA (ceRNA). Functionals investigation revealed that miR-218-5p attenuates GCs proliferation and steroidogenesis, which is opposite to that of circRPS19. In addition, we also confirmed that circRPS19 upregulates the expression of Inhibin beta B subunit (INHBB) by binding with miR-218-5p to facilitate GCs proliferation and steroidogenesis. Overall, this study revealed that circRPS19 regulates GCs development by releasing the repression of miR-218-5p on INHBB, which suggests a novel mechanism in respect to circRNA and miRNA regulation in ovarian follicle development.
Collapse
Affiliation(s)
- Yuanhang Wei
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoxu Shen
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiyu Zhao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haorong He
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yao Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qing Zhu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Huadong Yin
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
2
|
Gong L, Hou J, Yang H, Zhang X, Zhao J, Wang L, Yin X, Feng X, Yin C. Kuntai capsule attenuates premature ovarian insufficiency by activating the FOXO3/SIRT5 signaling pathway in mice: A comprehensive study using UHPLC-LTQ-Orbitrap and integrated pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117625. [PMID: 38145859 DOI: 10.1016/j.jep.2023.117625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Classical prescriptions are not only a primary method of clinical treatment in traditional Chinese medicine (TCM) but also represent breakthroughs in the inheritance and development of this field. Kuntai capsule (KTC), a formulation based on a classical prescription, comprises six TCMs: Rehmanniae Radix Praeparata, Coptidis Rhizoma, Paeoniae Radix Alba, Scutellariae Radix, Asini Corii Colla, and Poria. This formulation possesses various beneficial effects, such as nourishing yin and blood, clearing heat and purging fire, and calming the nerves and relieving annoyance. The investigation of the efficacy and mechanism of KTC in regulating anti-aging factors in the treatment of premature ovarian insufficiency (POI) is not only a prominent topic in classical prescription research but also a crucial issue in the treatment of female reproductive aging using TCM. AIM OF THE STUDY To evaluate the therapeutic effect of KTC on POI and its underlying mechanism. MATERIALS AND METHODS Healthy and specific pathogen-free (SPF) female Kunming mice aged 6-8 weeks were selected. After acclimatization, the mice were randomly divided into a control, model, and high, middle, and low dose groups of KTC (1.6, 0.8, and 0.4 mg/kg, respectively). Except for the control group, the animals in the other groups were administered a single intraperitoneal injection of 120 mg/kg cyclophosphamide and 30 mg/kg Busulfan to induce the model of POI. After modeling, the mice were treated with the corresponding drugs for 7 days. Serum and ovarian tissues were collected, and the levels of serum follicle-stimulating hormone (FSH), estradiol (E2), and superoxide dismutase 2 (SOD2) were determined using enzyme-linked immunosorbent assay (ELISA). The chemical composition of KTC was characterized and analyzed using ultra-high-pressure liquid chromatography-linear ion trap-Orbitrap tandem mass spectrometry. A "drug-component-target-pathway-disease" network was constructed using network pharmacology research methods to identify the key active components of KTC in treating POI and to elucidate its potential mechanism. The protein expression of the FOXO3/SIRT5 pathway was detected by western blotting. RESULTS Compared to the model group, the high-dose group of KTC showed a significant increase in ovarian index, significant increase in levels of E2 and SOD2, and a significant decrease in FSH levels. Through systematic analysis of the chemical constituents of KTC, 69 compounds were identified, including 7 organic acids, 14 alkaloids, 28 flavonoids, 15 terpenoids, 2 lignans, 2 phenylpropanoids, and 1 sugar. Based on network pharmacology research methods, it was determined that KTC exerts its therapeutic effect on POI through multiple components (paeoniflorin and malic acid), multiple targets (FOXO3 and SIRT5), and multiple pathways (prolactin signaling pathway, longevity regulating pathway, and metabolic pathways). The accuracy of the network pharmacology prediction was further validated by detecting the protein expression of SIRT5 and FOXO3a, which showed a significant increase in the middle and high-dose groups of KTC compared to the model group. CONCLUSIONS KTC may effectively treat POI through a multi-component, multi-target, multi-pathway approach, providing an experimental basis for using KTC based on classical prescriptions in the treatment of POI.
Collapse
Affiliation(s)
- Leilei Gong
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| | - Jinli Hou
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.
| | - Hongjun Yang
- China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xueyan Zhang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| | - Jingxia Zhao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Lan Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xiaojie Yin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xin Feng
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| | - Chenghong Yin
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| |
Collapse
|
3
|
Cacciottola L, Vitale F, Donnez J, Dolmans MM. Use of mesenchymal stem cells to enhance or restore fertility potential: a systematic review of available experimental strategies. Hum Reprod Open 2023; 2023:hoad040. [PMID: 37954935 PMCID: PMC10637864 DOI: 10.1093/hropen/hoad040] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/15/2023] [Indexed: 11/14/2023] Open
Abstract
STUDY QUESTION To what extent does regenerative medicine with stem cell therapy help to address infertility issues for future clinical application? SUMMARY ANSWER Regenerative medicine using different stem cell sources is yielding promising results in terms of protecting the ovarian reserve from damage and senescence, and improving fertility potential in various preclinical settings. WHAT IS KNOWN ALREADY Regenerative medicine using stem cell therapy is emerging as a potential strategy to address a number of issues in the field of human reproduction. Indeed, different types of adult and fetal mesenchymal stem cells (MSCs) have been tested with promising results, owing to their ability to differentiate into different tissue lineages, move toward specific injured sites (homing), and generate a secretome with wound-healing, proangiogenic, and antioxidant capacities. STUDY DESIGN SIZE DURATION Guided by the checklist for preferred reporting items for systematic reviews and meta-analyses, we retrieved relevant studies from PubMed, Medline, and Embase databases until June 2023 using the following keywords: 'mesenchymal stem cells' AND 'ovarian follicles' OR 'ovarian tissue culture' OR 'ovarian follicle culture' OR 'cumulus oocyte complex'. Only peer-reviewed published articles written in English were included. PARTICIPANTS/MATERIALS SETTING METHODS The primary outcome for the experimental strategies was evaluation of the ovarian reserve, with a focus on follicle survival, number, and growth. Secondary outcomes involved analyses of other parameters associated with the follicle pool, such as hormones and growth factors, ovarian tissue viability markers including oxidative stress levels, oocyte growth and maturation rates, and of course pregnancy outcomes. MAIN RESULTS AND THE ROLE OF CHANCE Preclinical studies exploring MSCs from different animal origins and tissue sources in specific conditions were selected (n = 112), including: in vitro culture of granulosa cells, ovarian tissue and isolated ovarian follicles; ovarian tissue transplantation; and systemic or intraovarian injection after gonadotoxic or age-related follicle pool decline. Protecting the ovarian reserve from aging and gonadotoxic damage has been widely tested in vitro and in vivo using murine models and is now yielding initial data in the first ever case series of patients with premature ovarian insufficiency. Use of MSCs as feeder cells in ovarian tissue culture was found to improve follicle outcomes and oocyte competence, bringing us one step closer to future clinical application. MSCs also have proved effective at boosting revascularization in the transplantation site when grafting ovarian tissue in experimental animal models. LIMITATIONS REASONS FOR CAUTION While preclinical results look promising in terms of protecting the ovarian reserve in different experimental models (especially those in vitro using various mammal experimental models and in vivo using murine models), there is still a lot of work to do before this approach can be considered safe and successfully implemented in a clinical setting. WIDER IMPLICATIONS OF THE FINDINGS All gathered data on the one hand show that regenerative medicine techniques are quickly gaining ground among innovative techniques being developed for future clinical application in the field of reproductive medicine. After proving MSC effectiveness in preclinical settings, there is still a lot of work to do before MSCs can be safely and effectively used in different clinical applications. STUDY FUNDING/COMPETING INTERESTS This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (FNRS-PDR T.0077.14, FNRS-CDR J.0063.20, and grant 5/4/150/5 awarded to Marie-Madeleine Dolmans), Fonds Spéciaux de Recherche, and the Fondation St Luc. None of the authors have any competing interest to disclose. REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- L Cacciottola
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - F Vitale
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - J Donnez
- Society for Research into Infertility, Brussels, Belgium
- Université Catholique de Louvain, Brussels, Belgium
| | - M M Dolmans
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
4
|
Chi YN, Yang JM, Liu N, Cui YH, Ma L, Lan XB, Ma WQ, Liu YJ, Yu JQ, Du J. Development of protective agents against ovarian injury caused by chemotherapeutic drugs. Biomed Pharmacother 2022; 155:113731. [PMID: 36179491 DOI: 10.1016/j.biopha.2022.113731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Chemotherapy is one of the causes of ovarian injury and infertility. Although assisted reproductive technology helps young female patients with cancer become pregnant, preventing chemotherapy-induced ovarian injury will often possess even more significant benefits. OBJECTIVE We aimed at demonstrating the hazardous effects and mechanisms of ovarian injury by chemotherapeutic agents, as well as demonstrating agents that protect the ovary from chemotherapy-induced injury. RESULTS Chemotherapeutic agents cause death or accelerate activation of follicles and damage to the blood vessels in the ovary, resulting in inflammation. These often require drug development to protect the ovaries from injury. CONCLUSIONS Our findings provide a basis for the development of drugs to protect the ovaries from injury. Although there are many preclinical studies on potential protective drugs, there is still an urgent need for a large number of clinical experiments to verify their potential use.
Collapse
Affiliation(s)
- Yan-Nan Chi
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Jia-Mei Yang
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China; School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Ning Liu
- Key Laboratory of Hui Ethnic Medicine Modernization, the Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Yan-Hong Cui
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Lin Ma
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Xiao-Bing Lan
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Wen-Qian Ma
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Yan-Jie Liu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Jian-Qiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China; Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan 750004, China.
| | - Juan Du
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
5
|
Chen Y, Fan X, Ma K, Wang K, Tian C, Li M, Gong L. Bushen Culuan Decoction Ameliorates Premature Ovarian Insufficiency by Acting on the Nrf2/ARE Signaling Pathway to Alleviate Oxidative Stress. Front Pharmacol 2022; 13:857932. [PMID: 35462905 PMCID: PMC9019758 DOI: 10.3389/fphar.2022.857932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Premature ovarian insufficiency (POI) can result in lower fertility and shorten the female reproductive span. Bushen-Culuan Decoction (BCD) is a traditional Chinese medication utilized for treating POI for many years. We previously observed that BCD protects against further deterioration of the ovarian reserve of POI patients, however, the underlying mechanism has not been well studied. Our investigation seeks to evaluate the effect of BCD on POI induced by Tripterygium wilfordii polyglycosidium (TWP) and the likely mechanistic pathways, which we hypothesize may involve the Nrf2/ARE pathway. The body weights, estrous cycle, serum hormone levels, histological follicular analysis and quantification, levels of oxidative stress biomarkers in the ovarian tissue of POI mice models were evaluated. Western blotting and RT-PCR enabled quantification of the components of the Nrf2/ARE pathway. Our results showed that BCD restored hormonal profiles and estrous cycles of POI mice similar to those observed in healthy controls. BCD reduced the numbers of atretic follicles while increasing the number of primordial follicles. BCD facilitated lower 8-OHdG and MDA levels while increasing levels of key antioxidant enzymes including GSH-Px, CAT, and SOD. Furthermore, TWP increased Bach 1, Nrf2, and Keap 1 expressions at the translational level, while decreased that of HO-1. BCD treatment also promoted nuclear translocation rates of Bach 1 and Nrf2, suppressed Keap 1 protein expression, as well as raised HO-1 protein expression. Taken together, BCD likely augments ovarian reserve by activating the Nrf2/ARE signaling pathway, which stimulated higher levels of antioxidants and suppressed oxidative stress. BCD may be an important therapeutic compound in POI.
Collapse
Affiliation(s)
- Yanxia Chen
- Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Xiaodi Fan
- Institute of Basic Medical Science of Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Kun Ma
- China Academy of Chinese Medical Science, Beijing, China
| | - Kaili Wang
- Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Caidie Tian
- Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Min Li
- China Academy of Chinese Medical Science, Beijing, China
| | - Linjuan Gong
- Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China
| |
Collapse
|
6
|
Lange-Consiglio A, Capra E, Herrera V, Lang-Olip I, Ponsaerts P, Cremonesi F. Application of Perinatal Derivatives in Ovarian Diseases. Front Bioeng Biotechnol 2022; 10:811875. [PMID: 35141212 PMCID: PMC8818994 DOI: 10.3389/fbioe.2022.811875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/05/2022] [Indexed: 12/18/2022] Open
Abstract
Reproductive diseases could lead to infertility and have implications for overall health, most importantly due to psychological, medical and socio-economic consequences for individuals and society. Furthermore, economical losses also occur in animal husbandry. In both human and veterinary medicine, hormonal and surgical treatments, as well as assisted reproductive technologies are used to cure reproductive disorders, however they do not improve fertility. With ovarian disorders being the main reproductive pathology in human and bovine, over the past 2 decades research has approached regenerative medicine in animal model to restore normal function. Ovarian pathologies are characterized by granulosa cell and oocyte apoptosis, follicular atresia, decrease in oocyte quality and embryonic development potential, oxidative stress and mitochondrial abnormalities, ultimately leading to a decrease in fertility. At current, application of mesenchymal stromal cells or derivatives thereof represents a valid strategy for regenerative purposes. Considering their paracrine/autocrine mode of actions that are able to regenerate injured tissues, trophic support, preventing apoptosis and fibrosis, promoting angiogenesis, stimulating the function and differentiation of endogenous stem cells and even reducing the immune response, are all important players in their future therapeutic success. Nevertheless, obtaining mesenchymal stromal cells (MSC) from adult tissues requires invasive procedures and implicates decreased cell proliferation and a reduced differentiation capacity with age. Alternatively, the use of embryonic stem cells as source of cellular therapeutic encountered several ethical concerns, as well as the risk of teratoma formation. Therefore, several studies have recently focussed on perinatal derivatives (PnD) that can be collected non-invasively and, most importantly, display similar characteristics in terms of regenerating-inducing properties, immune-modulating properties and hypo-immunogenicity. This review will provide an overview of the current knowledge and future perspectives of PnD application in the treatment of ovarian hypofunction.
Collapse
Affiliation(s)
- Anna Lange-Consiglio
- Dipartimento di Medicina Veterinaria, Università Degli Studi di Milano, Lodi, Italy
- Centro Clinico-Veterinario e Zootecnico-Sperimentale di Ateneo, Università Degli Studi di Milano, Lodi, Italy
- *Correspondence: Anna Lange-Consiglio,
| | - Emanuele Capra
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale Delle Ricerche IBBA CNR, Lodi, Italy
| | - Valentina Herrera
- Dipartimento di Medicina Veterinaria, Università Degli Studi di Milano, Lodi, Italy
| | - Ingrid Lang-Olip
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Fausto Cremonesi
- Dipartimento di Medicina Veterinaria, Università Degli Studi di Milano, Lodi, Italy
- Centro Clinico-Veterinario e Zootecnico-Sperimentale di Ateneo, Università Degli Studi di Milano, Lodi, Italy
| |
Collapse
|
7
|
Gao M, Yu Z, Yao D, Qian Y, Wang Q, Jia R. Mesenchymal stem cells therapy: A promising method for the treatment of uterine scars and premature ovarian failure. Tissue Cell 2021; 74:101676. [PMID: 34798583 DOI: 10.1016/j.tice.2021.101676] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022]
Abstract
Both intrauterine adhesions (IUA) and premature ovarian failure (POF) have plagued women all over the world for a long time. It is well known that all invasive operations involving the uterus can disrupt its structural and functional integrity to a varying degree, which inevitably lead to abnormal scar formation, such as IUA, also known as Asherman's syndrome with symptoms like hypomenorrhea or infertility. Another reproductive disorder that causes infertility is primary ovarian insufficiency (POI) or POF, which is a degenerative phenomenon in the ovary among women under the age of 40. In recent years, various types of stem cells, especially mesenchymal stem cells (MSCs) have been widely used in reproductive medicine due to their properties, such as immunoregulation, anti-inflammation, angiogenesis, anti-apoptosis, and trophicity. However, the extensive clinical application of cell therapy is impeded by their safety, cost, and manufacturing. In this review, we sought to summarize the recent advances in using different types of MSCs in treating uterine scars and POF. We also describe several biological pathways and molecules involved in animal studies and clinical application; extracellular vesicles secreted by MSCs may be a promising attractive tool to ensure the treatment of infertility by restoring normal reproductive function.
Collapse
Affiliation(s)
- Mingming Gao
- Fourth Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu Province, China; Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Zhaoer Yu
- Fourth Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu Province, China; Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Dan Yao
- Fourth Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu Province, China; Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Yating Qian
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Qi Wang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Ruizhe Jia
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China.
| |
Collapse
|
8
|
Sen Halicioglu B, Saadat KASM, Tuglu MI. Adipose-Derived Mesenchymal Stem Cell Transplantation in Chemotherapy-Induced Premature Ovarian Insufficiency: the Role of Connexin and Pannexin. Reprod Sci 2021; 29:1316-1331. [PMID: 34449073 DOI: 10.1007/s43032-021-00718-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
In women undergoing chemotherapy, it is inevitable that infertility risk will increase because of impaired reproductive functions. Premature ovarian insufficiency (POI), which occurs as a devastating result of chemotherapy, is the complete depletion or dysfunction of ovarian follicles. Adipose-derived mesenchymal stem cells (ADMSCs) transplantation is among the alternative treatment methods for POI, which currently do not have an effective treatment method. Apoptosis of granulosa cells in POI is seen as the main mechanism of the disease. It is also reported that in addition to molecules directly associated with apoptosis, connexins, and pannexins are also potential effector molecules in apoptosis. The roles of these molecules in POI, which are known to play a role in many important mechanisms in the ovary, are unknown. In this study, it was aimed to analyze the expressions of Connexin43 and Pannexin1, which are thought to be effective in the formation of POI, and to show the relationship between the antiapoptotic effects of ADMSCs transplantation and these molecules in POI. For this purpose, Caspase3, Connexin43, Pannexin1 proteins, and mRNA expressions were analyzed by immunohistochemistry and RT-qPCR, and AMH levels were measured by ELISA. It was determined that Pannexin1, Caspase3 proteins, and mRNA levels increased in the POI, while Pannexin1 and Caspase3 expressions decreased in the ADMSCs treated group. While Connexin43 level decreased in POI, Connexin43 protein and mRNA levels increased in ADMSCs group. Consequently, this study demonstrated for the first time that Connexin43 and Pannexin1 were associated with apoptosis in POI. In addition, it was revealed that ADMSCs transplantation could produce antiapoptotic effects by modulating these molecules.
Collapse
Affiliation(s)
- Busra Sen Halicioglu
- Faculty of Medicine, Department of Histology and Embryology, Gaziantep University, Gaziantep, Turkey. .,Faculty of Medicine, Department of Histology and Embryology, Manisa Celal Bayar University, Manisa, Turkey.
| | - Khandakar A S M Saadat
- Faculty of Medicine, Department of Medical Biology, Gaziantep University, Gaziantep, Turkey
| | - Mehmet Ibrahim Tuglu
- Faculty of Medicine, Department of Histology and Embryology, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
9
|
Zhao Y, Ma J, Yi P, Wu J, Zhao F, Tu W, Liu W, Li T, Deng Y, Hao J, Wang H, Yan L. Human umbilical cord mesenchymal stem cells restore the ovarian metabolome and rescue premature ovarian insufficiency in mice. Stem Cell Res Ther 2020; 11:466. [PMID: 33148334 PMCID: PMC7641864 DOI: 10.1186/s13287-020-01972-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/11/2020] [Indexed: 01/01/2023] Open
Abstract
Background Premature ovarian insufficiency (POI) is an ovarian dysfunction that seriously affects a woman’s physiological health and reproduction. Mesenchymal stem cell (MSC) transplantation offers a promising treatment option for ovarian restoration in rodent POI models. However, the efficacy and mechanism of it remain unclear. Methods POI mice model was generated by cyclophosphamide and busulfan, followed with the treatment of tail-vein injection of the human umbilical cord mesenchymal stem cells (hUCMSCs). Maternal physiological changes and offspring behavior were detected. To reveal the pathogenesis and therapeutic mechanisms of POI, we first compared the metabolite profiles of healthy and POI ovarian tissues using untargeted metabolomics analyses. After stem cell therapy, we then collected the ovaries from control, POI, and hUCMSC-treated POI groups for lipid metabolomics and pseudotargeted metabolomics analysis. Results Our results revealed remarkable changes of multiple metabolites, especially lipids, in ovarian tissues after POI generation. Following the transplantation of clinical-grade hUCMSCs, POI mice exhibited significant improvements in body weight, sex hormone levels, estrous cycles, and reproductive capacity. Lipid metabolomics and pseudotargeted metabolomics analyses for the ovaries showed that the metabolite levels in the POI group, mainly lipids, glycerophospholipids, steroids, and amino acids changed significantly compared with the controls’, and most of them returned to near-healthy levels after receiving hUCMSC treatment. Meanwhile, we also observed an increase of monosaccharide levels in the ovaries from POI mice and a decrease after stem cell treatment. Conclusions hUCMSCs restore ovarian function through activating the PI3K pathway by promoting the level of free amino acids, consequently improving lipid metabolism and reducing the concentration of monosaccharides. These findings provide potential targets for the clinical diagnosis and treatment of POI.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiao Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peiye Yi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feiyan Zhao
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Wan Tu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjing Liu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tianda Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Deng
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Hao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. .,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Long Yan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|