1
|
Pirnar Ž, Jager F, Geršak K. Peak amplitude of the normalized power spectrum of the electromyogram of the uterus in the low frequency band is an effective predictor of premature birth. PLoS One 2024; 19:e0308797. [PMID: 39264880 PMCID: PMC11392270 DOI: 10.1371/journal.pone.0308797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/31/2024] [Indexed: 09/14/2024] Open
Abstract
The current trends in the development of methods for non-invasive prediction of premature birth based on the electromyogram of the uterus, i.e., electrohysterogram (EHG), suggest an ever-increasing use of large number of features, complex models, and deep learning approaches. These "black-box" approaches rarely provide insights into the underlying physiological mechanisms and are not easily explainable, which may prevent their use in clinical practice. Alternatively, simple methods using meaningful features, preferably using a single feature (biomarker), are highly desirable for assessing the danger of premature birth. To identify suitable biomarker candidates, we performed feature selection using the stabilized sequential-forward feature-selection method employing learning and validation sets, and using multiple standard classifiers and multiple sets of the most widely used features derived from EHG signals. The most promising single feature to classify between premature EHG records and EHG records of all other term delivery modes evaluated on the test sets appears to be Peak Amplitude of the normalized power spectrum (PA) of the EHG signal in the low frequency band (0.125-0.575 Hz) which closely matches the known Fast Wave Low (FWL) frequency band. For classification of EHG records of the publicly available TPEHG DB, TPEHGT DS, and ICEHG DS databases, using the Partition-Synthesis evaluation technique, the proposed single feature, PA, achieved Classification Accuracy (CA) of 76.5% (AUC of 0.81). In combination with the second most promising feature, Median Frequency (MF) of the power spectrum in the frequency band above 1.0 Hz, which relates to the maternal resting heart rate, CA increased to 78.0% (AUC of 0.86). The developed method in this study for the prediction of premature birth outperforms single-feature and many multi-feature methods based on the EHG, and existing non-invasive chemical and molecular biomarkers. The developed method is fully automatic, simple, and the two proposed features are explainable.
Collapse
Affiliation(s)
- Žiga Pirnar
- Department of Multimedia, Laboratory for Biomedical Computer Systems and Imaging, Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Franc Jager
- Department of Multimedia, Laboratory for Biomedical Computer Systems and Imaging, Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Ksenija Geršak
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Perinatology, Division of Obstetrics and Gynecology, University Medical Center Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Nieto-Del-Amor F, Ye-Lin Y, Monfort-Ortiz R, Diago-Almela VJ, Modrego-Pardo F, Martinez-de-Juan JL, Hao D, Prats-Boluda G. Automatic semantic segmentation of EHG recordings by deep learning: An approach to a screening tool for use in clinical practice. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 254:108317. [PMID: 38996804 DOI: 10.1016/j.cmpb.2024.108317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND AND OBJECTIVE Preterm delivery is an important factor in the disease burden of the newborn and infants worldwide. Electrohysterography (EHG) has become a promising technique for predicting this condition, thanks to its high degree of sensitivity. Despite the technological progress made in predicting preterm labor, its use in clinical practice is still limited, one of the main barriers being the lack of tools for automatic signal processing without expert supervision, i.e. automatic screening of motion and respiratory artifacts in EHG records. Our main objective was thus to design and validate an automatic system of segmenting and screening the physiological segments of uterine origin in EHG records for robust characterization of uterine myoelectric activity, predicting preterm labor and help to promote the transferability of the EHG technique to clinical practice. METHODS For this, we combined 300 EHG recordings from the TPEHG DS database and 69 EHG recordings from our own database (Ci2B-La Fe) of women with singleton gestations. This dataset was used to train and evaluate U-Net, U-Net++, and U-Net 3+ for semantic segmentation of the physiological and artifacted segments of EHG signals. The model's predictions were then fine-tuned by post-processing. RESULTS U-Net 3+ outperformed the other models, achieving an area under the ROC curve of 91.4 % and an average precision of 96.4 % in detecting physiological activity. Thresholds from 0.6 to 0.8 achieved precision from 93.7 % to 97.4 % and specificity from 81.7 % to 94.5 %, detecting high-quality physiological segments while maintaining a trade-off between recall and specificity. Post-processing improved the model's adaptability by fine-tuning both the physiological and corrupted segments, ensuring accurate artifact detection while maintaining physiological segment integrity in EHG signals. CONCLUSIONS As automatic segmentation proved to be as effective as double-blind manual segmentation in predicting preterm labor, this automatic segmentation tool fills a crucial gap in the existing preterm delivery prediction system workflow by eliminating the need for double-blind segmentation by experts and facilitates the practical clinical use of EHG. This work potentially contributes to the early detection of authentic preterm labor women and will allow clinicians to design individual patient strategies for maternal health surveillance systems and predict adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Félix Nieto-Del-Amor
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València (Ci2B), Valencia 46022, Spain
| | - Yiyao Ye-Lin
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València (Ci2B), Valencia 46022, Spain; BJUT-UPV Joint Research Laboratory in Biomedical Engineering, China
| | | | | | | | - Jose L Martinez-de-Juan
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València (Ci2B), Valencia 46022, Spain; BJUT-UPV Joint Research Laboratory in Biomedical Engineering, China
| | - Dongmei Hao
- Faculty of Environment and Life, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China; BJUT-UPV Joint Research Laboratory in Biomedical Engineering, China
| | - Gema Prats-Boluda
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València (Ci2B), Valencia 46022, Spain; BJUT-UPV Joint Research Laboratory in Biomedical Engineering, China.
| |
Collapse
|
3
|
Shen J, Liu Y, Zhang M, Pumir A, Mu L, Li B, Xu J. Multi-channel electrohysterography enabled uterine contraction characterization and its effect in delivery assessment. Comput Biol Med 2023; 167:107697. [PMID: 37976821 DOI: 10.1016/j.compbiomed.2023.107697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Uterine contractions are routinely monitored by tocodynamometer (TOCO) at late stage of pregnancy to predict the onset of labor. However, TOCO reveals no information on the synchrony and coherence of contractions, which are important contributors to a successful delivery. The electrohysterography (EHG) is a recording of the electrical activities that trigger the local muscles to contract. The spatial-temporal information embedded in multiple channel EHG signals make them ideal for characterizing the synchrony and coherence of uterine contraction. To proceed, contractile time-windows are identified from TOCO signals and are then used to segment out the simultaneously recorded EHG signals of different channels. We construct sample entropy SamEn and Concordance Correlation based feature ψ from these EHG segments to quantify the synchrony and coherence of contraction. To test the effectiveness of the proposed method, 122 EHG recordings in the Icelandic EHG database were divided into two groups according to the time difference between the gestational ages at recording and at delivery (TTD). Both SamEn and ψ show clear difference in the two groups (p<10-5) even when measurements were made 120 h before delivery. Receiver operating characteristic curve analysis of these two features gave AUC values of 0.834 and 0.726 for discriminating imminent labor defined with TTD ≤ 24 h. The SamEn was significantly smaller in women (0.1433) of imminent labor group than in women (0.3774) of the pregnancy group. Using an optimal cutoff value of SamEn to identify imminent labor gives sensitivity, specificity, and accuracy as high as 0.909, 0.712 and 0.743, respectively. These results demonstrate superiority in comparing to the existing SOTA methods. This study is the first research work focusing on characterizing the synchrony property of contractions from the electrohysterography signals. Despite the very limited dataset used in the validation process, the promising results open a new direction to the use of electrohysterography in obstetrics.
Collapse
Affiliation(s)
- Junhua Shen
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Yan Liu
- College of Computer Science, Zhejiang University of Technology, Hangzhou, China
| | - Meiyu Zhang
- College of Computer Science, Zhejiang University of Technology, Hangzhou, China
| | - Alain Pumir
- Laboratoire de Physique, Ecole Normal Superieure de Lyon, Lyon, France
| | - Liangshan Mu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Baohua Li
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Jinshan Xu
- College of Computer Science, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
4
|
Goldsztejn U, Nehorai A. Estimating uterine activity from electrohysterogram measurements via statistical tensor decomposition. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Monitoring uterine contractions during labor: current challenges and future directions. Am J Obstet Gynecol 2023; 228:S1192-S1208. [PMID: 37164493 DOI: 10.1016/j.ajog.2022.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 03/21/2023]
Abstract
Organ-level models are used to describe how cellular and tissue-level contractions coalesce into clinically observable uterine contractions. More importantly, these models provide a framework for evaluating the many different contraction patterns observed in laboring patients, ideally offering insight into the pitfalls of currently available recording modalities and suggesting new directions for improving recording and interpretation of uterine contractions. Early models proposed wave-like propagation of bioelectrical activity as the sole mechanism for recruiting the myometrium to participate in the contraction and increase contraction strength. However, as these models were tested, the results consistently revealed that sequentially propagating waves do not travel long distances and do not encompass the gravid uterus. To resolve this discrepancy, a model using 2 mechanisms, or a "dual model," for organ-level signaling has been proposed. In the dual model, the myometrium is recruited by action potentials that propagate wave-like as far as 10 cm. At longer distances, the myometrium is recruited by a mechanotransduction mechanism that is triggered by rising intrauterine pressure. In this review, we present the influential models of uterine function, highlighting their main features and inconsistencies, and detail the role of intrauterine pressure in signaling and cervical dilation. Clinical correlations demonstrate the application of organ-level models. The potential to improve the recording and clinical interpretation of uterine contractions when evaluating labor is discussed, with emphasis on uterine electromyography. Finally, 7 questions are posed to help guide future investigations on organ-level signaling mechanisms.
Collapse
|
6
|
Pirnar Ž, Jager F, Geršak K. Characterization and separation of preterm and term spontaneous, induced, and cesarean EHG records. Comput Biol Med 2022; 151:106238. [PMID: 36343404 DOI: 10.1016/j.compbiomed.2022.106238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/30/2022] [Accepted: 10/22/2022] [Indexed: 12/27/2022]
Abstract
To improve the understanding of the underlying physiological processes that lead to preterm birth, and different term delivery modes, we quantitatively characterized and assessed the separability of the sets of early (23rd week) and later (31st week) recorded, preterm and term spontaneous, induced, cesarean, and induced-cesarean electrohysterogram (EHG) records using several of the most widely used non-linear features extracted from the EHG signals. Linearly modeled temporal trends of the means of the median frequencies (MFs), and of the means of the peak amplitudes (PAs) of the normalized power spectra of the EHG signals, along pregnancy (from early to later recorded records), derived from a variety of frequency bands, revealed that for the preterm group of records, in comparison to all other term delivery groups, the frequency spectrum of the frequency band B0L (0.08-0.3 Hz) shifts toward higher frequencies, and that the spectrum of the newly identified frequency band B0L' (0.125-0.575 Hz), which approximately matches the Fast Wave Low band, becomes stronger. The most promising features to separate between the later preterm group and all other later term delivery groups appear to be MF (p=1.1⋅10-5) in the band B0L of the horizontal signal S3, and PA (p=2.4⋅10-8) in the band B0L' (S3). Moreover, the PA in the band B0L' (S3) showed the highest power to individually separate between the later preterm group and any other later term delivery group. Furthermore, the results suggest that in preterm pregnancies the resting maternal heart rate decreases between the 23rd and 31st week of gestation.
Collapse
Affiliation(s)
- Žiga Pirnar
- Faculty of Computer and Information Science, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Franc Jager
- Faculty of Computer and Information Science, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia.
| | - Ksenija Geršak
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; University Medical Center Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Albaladejo-Belmonte M, Prats-Boluda G, Ye Lin Y, Garfield RE, Garcia-Casado J. Uterine slow wave: directionality and changes with imminent delivery. Physiol Meas 2022; 43. [PMID: 35896091 DOI: 10.1088/1361-6579/ac84c0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/27/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The slow wave (SW) of the electrohysterogram (EHG) may contain relevant information on the electrophysiological condition of the uterus throughout pregnancy and labor. Our aim was to assess differences in the SW as regards the imminence of labor and the directionality of uterine myoelectrical activity. APPROACH The SW of the EHG was extracted from the signals of the Icelandic 16-electrode EHG database in the bandwidth [5, 30] mHz and its power, spectral content, complexity and synchronization between the horizontal (X) and vertical (Y) directions were characterized by the root mean square (RMS), dominant frequency (domF), sample entropy (SampEn) and maximum cross-correlation (CCmax) of the signals, respectively. Significant differences between parameters at time-to-delivery (TTD) ≤7 vs. >7 days and between the horizontal vs. vertical directions were assessed. MAIN RESULTS The SW power significantly increased in both directions as labor approached (TTD≤7d vs. >7d (mean±SD): x= 0.12±0.10 vs. 0.08±0.06mV; y= 0.12±0.09 vs. 0.08±0.05mV), as well as the dominant frequency in the horizontal direction (= 9.1±1.3 vs. 8.5±1.2mHz) and the synchronization between both directions (= 0.44±0.16 vs. 0.36±0.14). Furthermore, its complexity decreased in the vertical direction (= 6.13·10-2±8.7·10-3 vs. 6.50·10-2±8.3·10-3), suggesting a higher cell-to-cell electrical coupling. Whereas there were no differences between the SW features in both directions in the general population, statistically significant differences were obtained between them in individuals in many cases. SIGNIFICANCE Our results suggest that the SW of the EHG is related to bioelectrical events in the uterus and could provide objective information to clinicians in challenging obstetric scenarios.
Collapse
Affiliation(s)
- Monica Albaladejo-Belmonte
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Edif. 8B, Camino de Vera SN, Valencia, Valencia, 46022, SPAIN
| | - Gema Prats-Boluda
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Edif. 8B, Camino de Vera SN, Valencia, Valencia, 46022, SPAIN
| | - Yiyao Ye Lin
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Edif. 8B, Camino de Vera SN, Valencia, Valencia, 46022, SPAIN
| | - Robert Edward Garfield
- The University of Arizona College of Medicine Tucson, 1501 N Campbell Ave, Tucson, AZ 85724, USA, Tucson, Arizona, 85724-5018, UNITED STATES
| | - Javier Garcia-Casado
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Edif. 8B, Camino de Vera SN, Valencia, Valencia, 46022, SPAIN
| |
Collapse
|
8
|
Zhang Y, Hao D, Yang L, Zhou X, Ye-Lin Y, Yang Y. Assessment of Features between Multichannel Electrohysterogram for Differentiation of Labors. SENSORS (BASEL, SWITZERLAND) 2022; 22:3352. [PMID: 35591042 PMCID: PMC9104769 DOI: 10.3390/s22093352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Electrohysterogram (EHG) is a promising method for noninvasive monitoring of uterine electrical activity. The main purpose of this study was to characterize the multichannel EHG signals to distinguish between term delivery and preterm birth, as well as deliveries within and beyond 24 h. A total of 219 pregnant women were grouped in two ways: (1) term delivery (TD), threatened preterm labor (TPL) with the outcome of preterm birth (TPL_PB), and TPL with the outcome of term delivery (TPL_TD); (2) EHG recording time to delivery (TTD) ≤ 24 h and TTD > 24 h. Three bipolar EHG signals were analyzed for the 30 min recording. Six EHG features between multiple channels, including multivariate sample entropy, mutual information, correlation coefficient, coherence, direct partial Granger causality, and direct transfer entropy, were extracted to characterize the coupling and information flow between channels. Significant differences were found for these six features between TPL and TD, and between TTD ≤ 24 h and TTD > 24 h. No significant difference was found between TPL_PB and TPL_TD. The results indicated that EHG signals of TD were more regular and synchronized than TPL, and stronger coupling between multichannel EHG signals was exhibited as delivery approaches. In addition, EHG signals propagate downward for the majority of pregnant women regardless of different labors. In conclusion, the coupling and propagation features extracted from multichannel EHG signals could be used to differentiate term delivery and preterm birth and may predict delivery within and beyond 24 h.
Collapse
Affiliation(s)
- Yajun Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China; (Y.Z.); (L.Y.); (Y.Y.)
| | - Dongmei Hao
- Faculty of Environment and Life, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China; (Y.Z.); (L.Y.); (Y.Y.)
| | - Lin Yang
- Faculty of Environment and Life, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China; (Y.Z.); (L.Y.); (Y.Y.)
| | - Xiya Zhou
- Department of Obstetrics, Peking Union Medical College Hospital, Beijing 100730, China;
| | - Yiyao Ye-Lin
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Yimin Yang
- Faculty of Environment and Life, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China; (Y.Z.); (L.Y.); (Y.Y.)
| |
Collapse
|
9
|
|