1
|
Önen S, Gizer M, Çolak İÖ, Korkusuz P. Bioengineering Approaches for Male Infertility: From Microenvironmental Regeneration to in vitro Fertilization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1479:59-72. [PMID: 39881052 DOI: 10.1007/5584_2024_844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Male factor accounts for 30-50% of infertility cases and may occur due to congenital anomalies or acquired disorders. In such infertility cases where a limited number of mature sperm is produced, a solution is offered to patients with ART applications; however, these methods are inadequate in patients with germ cell aplasia due to damaged microenvironment. Since monolayer cell culture and static culture conditions do not provide the physical conditions of the 3D microenvironment, they have a limited effect on ensuring the execution of in vitro spermatogenesis properly. For this reason, current treatment approaches turn to biomaterial-implemented, microfluidic, and bioreactor systems where 3D physical conditions are provided. This book chapter focuses on static and dynamic culture conditions, as well as the use of biomaterials to increase the success of ex vivo spermatogenesis and microfluidic device-assisted sperm selection in ART.
Collapse
Affiliation(s)
| | | | - İmran Özge Çolak
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Petek Korkusuz
- METU MEMS Center, Ankara, Turkey.
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey.
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
2
|
Chen L, Zhang Y, Wang K, Jin M, Chen Q, Wang S, Hu W, Cai Z, Li Y, Li S, Gao Y, Zhou S, Peng Q. A patch comprising human umbilical cord-derived hydrogel and mesenchymal stem cells promotes pressure ulcer wound healing. ENGINEERED REGENERATION 2024; 5:433-442. [DOI: 10.1016/j.engreg.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
|
3
|
Nguyen ALV, Julian S, Weng N, Flannigan R. Advances in human In vitro spermatogenesis: A review. Mol Aspects Med 2024; 100:101320. [PMID: 39317014 DOI: 10.1016/j.mam.2024.101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/26/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Recent advances surrounding in vitro spermatogenesis (IVS) have shown potential in creating a new paradigm of regenerative medicine in the future of fertility treatments for males experiencing non-obstructive azoospermia (NOA). Male infertility is a common condition affecting approximately 15% of couples, with azoospermia being present in 15% of infertile males (Cocuzza et al., 2013; Esteves et al., 2011a). Treatment for patients with NOA has primarily been limited to surgical sperm retrieval combined with in vitro fertilization intracytoplasmic sperm injection (IVF-ICSI); however, sperm retrieval is successful in only half of these patients, and live birth rates typically range between 10 and 25% (Aljubran et al., 2022). Therefore, a significant need exists for regenerative therapies in this patient population. IVS has been considered as a model for further understanding the molecular and cellular processes of spermatogenesis and as a potential regenerative therapeutic approach. While 2D cell cultures using human testicular cells have been attempted in previous research, lack of proper spatial arrangement limits germ cell differentiation and maturation, posing challenges for clinical application. Recent research suggests that 3D technology may have advantages for IVS due to mimicry of the native cytoarchitecture of human testicular tissue along with cell-cell communication directly or indirectly. 3D organotypic cultures, scaffolds, organoids, microfluidics, testis-on-a-chip, and bioprinting techniques have all shown potential to contribute to the technology of regenerative treatment strategies, including in vitro fertilization (IVF). Although promising, further work is needed to develop technology for successful, replicable, and safe IVS for humans. The intersection between tissue engineering, molecular biology, and reproductive medicine in IVS development allows for multidisciplinary involvement, where challenges can be overcome to realize regenerative therapies as a viable option.
Collapse
Affiliation(s)
- Anna-Lisa V Nguyen
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, UK.
| | - Sania Julian
- Faculty of Integrated Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Ninglu Weng
- Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Ryan Flannigan
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Department of Urology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Gholami K, Deyhimfar R, Mirzaei A, Karimizadeh Z, Mashhadi R, Zahmatkesh P, Ghajar Azodian H, Aghamir SMK. Decellularized amniotic membrane hydrogel promotes mesenchymal stem cell differentiation into smooth muscle cells. FASEB J 2024; 38:e70004. [PMID: 39190010 DOI: 10.1096/fj.202302170rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/22/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Previous studies showed that the bladder extracellular matrix (B-ECM) could increase the differentiation efficiency of mesenchymal cells into smooth muscle cells (SMC). This study investigates the potential of human amniotic membrane-derived hydrogel (HAM-hydrogel) as an alternative to xenogeneic B-ECM for the myogenic differentiation of the rabbit adipose tissue-derived MSC (AD-MSC). Decellularized human amniotic membrane (HAM) and sheep urinary bladder (SUB) were utilized to create pre-gel solutions for hydrogel formation. Rabbit AD-MSCs were cultured on SUB-hydrogel or HAM-hydrogel-coated plates supplemented with differentiation media containing myogenic growth factors (PDGF-BB and TGF-β1). An uncoated plate served as the control. After 2 weeks, real-time qPCR, immunocytochemistry, flow cytometry, and western blot were employed to assess the expression of SMC-specific markers (MHC and α-SMA) at both protein and mRNA levels. Our decellularization protocol efficiently removed cell nuclei from the bladder and amniotic tissues, preserving key ECM components (collagen, mucopolysaccharides, and elastin) within the hydrogels. Compared to the control, the hydrogel-coated groups exhibited significantly upregulated expression of SMC markers (p ≤ .05). These findings suggest HAM-hydrogel as a promising xenogeneic-free alternative for bladder tissue engineering, potentially overcoming limitations associated with ethical concerns and contamination risks of xenogeneic materials.
Collapse
Affiliation(s)
- Keykavos Gholami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Roham Deyhimfar
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Stem Cells Technology and Tissue Regeneration, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Akram Mirzaei
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Karimizadeh
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahil Mashhadi
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Zahmatkesh
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
5
|
Nishimura T, Takebe T. Synthetic human gonadal tissues for toxicology. Reprod Toxicol 2024; 126:108598. [PMID: 38657700 DOI: 10.1016/j.reprotox.2024.108598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
The process of mammalian reproduction involves the development of fertile germ cells in the testis and ovary, supported by the surrounders. Fertilization leads to embryo development and ultimately the birth of offspring inheriting parental genome information. Any disruption in this process can result in disorders such as infertility and cancer. Chemical toxicity affecting the reproductive system and embryogenesis can impact birth rates, overall health, and fertility, highlighting the need for animal toxicity studies during drug development. However, the translation of animal data to human health remains challenging due to interspecies differences. In vitro culture systems offer a promising solution to bridge this gap, allowing the study of mammalian cells in an environment that mimics the physiology of the human body. Current advances on in vitro culture systems, such as organoids, enable the development of biomaterials that recapitulate the physiological state of reproductive organs. Application of these technologies to human gonadal cells would provide effective tools for drug screening and toxicity testing, and these models would be a powerful tool to study reproductive biology and pathology. This review focuses on the 2D/3D culture systems of human primary testicular and ovarian cells, highlighting the novel approaches for in vitro study of human reproductive toxicology, specifically in the context of testis and ovary.
Collapse
Affiliation(s)
- Toshiya Nishimura
- WPI Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka 565-0871, Japan.
| | - Takanori Takebe
- WPI Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka 565-0871, Japan; Division of Stem Cell and Organoid Medicine, Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Communication Design Center, Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan.
| |
Collapse
|
6
|
Gholami K, Asheghmadine E, Guitynavard F, Baghdadabad LZ, Taheri D, Zahmatkesh P, Reis LO, Aghamir SMK. An investigation of the therapeutic potential of the testicular tissue encapsulated in amnion membrane in mouse model: An experimental study. Int J Reprod Biomed 2024; 23:171-184. [PMID: 40371357 PMCID: PMC12070051 DOI: 10.18502/ijrm.v23i2.18489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 12/19/2024] [Accepted: 01/04/2025] [Indexed: 05/16/2025] Open
Abstract
Background Restoring fertility in male cancer individuals through testicular tissue transplantation faces challenges due to hypoxia-induced loss of spermatogonial stem cells (SSCs). Hydrogel encapsulation was explored to minimize hypoxic damage in testicular tissue transplantation. For this purpose, human amnion membrane (hAM)-derived hydrogel could be an alternative. Objective The potential of hAM-derived hydrogel to support testis tissue grafts was evaluated. Materials and Methods In this experimental study, testicular tissue samples (1-3 mm3) were obtained from 16 male NMRI mice (4-5 wk, 22 ± 2 gr). These tissue fragments were either encapsulated within a hydrogel derived from a hAM or left unencapsulated (control) prior to being autologously transplanted beneath the dorsal skin of mice subjected to hemilateral or bilateral orchiectomy. The grafted testicular tissues were histologically evaluated for key parameters, including the integrity of seminiferous tubules, survival of SSCs, Sertoli cell functionality, as well as hypoxia and apoptosis on day 21. Results No significant differences were observed between groups regarding ST integrity, number of SSCs, Sertoli cell functionality, or the rate of hypoxia-inducible factor 1-alpha and apoptosis (p ≤ 0.05). Conclusion In conclusion, this study demonstrated no effect of hAM hydrogel encapsulation on the outcomes of testicular tissue transplantation.
Collapse
Affiliation(s)
- Keykavoos Gholami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Plastic & Reconstructive Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Elahe Asheghmadine
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Guitynavard
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Diana Taheri
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pathology, Isfahan Kidney Disease Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parisa Zahmatkesh
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Leonardo Oliveira Reis
- UroScience and Department of Surgery (Urology), School of Medical Sciences, University of Campinas, Unicamp, and Pontifical Catholic University of Campinas, PUC-Campinas, Campinas, S ao Paulo, Brazil
| | | |
Collapse
|
7
|
Pasten González A, Salvador Alarcón C, Mora J, Martín Gimenez MP, Carrasco Torrents R, Krauel L. Current Status of Fertility Preservation in Pediatric Oncology Patients. CHILDREN (BASEL, SWITZERLAND) 2024; 11:537. [PMID: 38790532 PMCID: PMC11120648 DOI: 10.3390/children11050537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024]
Abstract
Cancer poses significant emotional challenges for children and adolescents, despite improvements in survival rates due to new therapies. However, there is growing concern about the long-term effects, including fertility issues. This review examines recent advancements and future directions in fertility preservation within a pediatric population subjected to oncological therapies. Worldwide, there is variability in the availability of fertility preservation methods, influenced by factors like development status and governmental support. The decision to pursue preservation depends on the risk of gonadotoxicity, alongside factors such as diagnosis, treatment, clinical status, and prognosis. Currently, options for preserving fertility in prepubertal boys are limited compared to girls, who increasingly have access to ovarian tissue preservation. Adolescents and adults have more options available, but ethical considerations remain complex and diverse.
Collapse
Affiliation(s)
- Albert Pasten González
- Pediatric Surgical Oncology Unit, Department of Pediatric Surgery, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain; (A.P.G.); (M.P.M.G.); (R.C.T.)
- Pediatric Cancer Center Barcelona, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain;
| | - Cristina Salvador Alarcón
- Department of Obstetrics and Gynecology, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain;
| | - Jaume Mora
- Pediatric Cancer Center Barcelona, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain;
| | - Marta P. Martín Gimenez
- Pediatric Surgical Oncology Unit, Department of Pediatric Surgery, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain; (A.P.G.); (M.P.M.G.); (R.C.T.)
- Pediatric Cancer Center Barcelona, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain;
| | - Rosalia Carrasco Torrents
- Pediatric Surgical Oncology Unit, Department of Pediatric Surgery, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain; (A.P.G.); (M.P.M.G.); (R.C.T.)
- Pediatric Cancer Center Barcelona, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain;
| | - Lucas Krauel
- Pediatric Surgical Oncology Unit, Department of Pediatric Surgery, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain; (A.P.G.); (M.P.M.G.); (R.C.T.)
- Pediatric Cancer Center Barcelona, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain;
| |
Collapse
|
8
|
Górnicki T, Lambrinow J, Golkar-Narenji A, Data K, Domagała D, Niebora J, Farzaneh M, Mozdziak P, Zabel M, Antosik P, Bukowska D, Ratajczak K, Podhorska-Okołów M, Dzięgiel P, Kempisty B. Biomimetic Scaffolds-A Novel Approach to Three Dimensional Cell Culture Techniques for Potential Implementation in Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:531. [PMID: 38535679 PMCID: PMC10974775 DOI: 10.3390/nano14060531] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/28/2024] [Accepted: 03/14/2024] [Indexed: 01/06/2025]
Abstract
Biomimetic scaffolds imitate native tissue and can take a multidimensional form. They are biocompatible and can influence cellular metabolism, making them attractive bioengineering platforms. The use of biomimetic scaffolds adds complexity to traditional cell cultivation methods. The most commonly used technique involves cultivating cells on a flat surface in a two-dimensional format due to its simplicity. A three-dimensional (3D) format can provide a microenvironment for surrounding cells. There are two main techniques for obtaining 3D structures based on the presence of scaffolding. Scaffold-free techniques consist of spheroid technologies. Meanwhile, scaffold techniques contain organoids and all constructs that use various types of scaffolds, ranging from decellularized extracellular matrix (dECM) through hydrogels that are one of the most extensively studied forms of potential scaffolds for 3D culture up to 4D bioprinted biomaterials. 3D bioprinting is one of the most important techniques used to create biomimetic scaffolds. The versatility of this technique allows the use of many different types of inks, mainly hydrogels, as well as cells and inorganic substances. Increasing amounts of data provide evidence of vast potential of biomimetic scaffolds usage in tissue engineering and personalized medicine, with the main area of potential application being the regeneration of skin and musculoskeletal systems. Recent papers also indicate increasing amounts of in vivo tests of products based on biomimetic scaffolds, which further strengthen the importance of this branch of tissue engineering and emphasize the need for extensive research to provide safe for humansbiomimetic tissues and organs. In this review article, we provide a review of the recent advancements in the field of biomimetic scaffolds preceded by an overview of cell culture technologies that led to the development of biomimetic scaffold techniques as the most complex type of cell culture.
Collapse
Affiliation(s)
- Tomasz Górnicki
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (J.L.); (M.Z.); (P.D.)
| | - Jakub Lambrinow
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (J.L.); (M.Z.); (P.D.)
| | - Afsaneh Golkar-Narenji
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27607, USA; (P.M.)
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.D.); (D.D.); (J.N.)
| | - Dominika Domagała
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.D.); (D.D.); (J.N.)
| | - Julia Niebora
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.D.); (D.D.); (J.N.)
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 6193673111, Iran;
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27607, USA; (P.M.)
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (J.L.); (M.Z.); (P.D.)
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (P.A.); (K.R.)
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Kornel Ratajczak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (P.A.); (K.R.)
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructure Research, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (J.L.); (M.Z.); (P.D.)
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.D.); (D.D.); (J.N.)
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (P.A.); (K.R.)
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic
| |
Collapse
|
9
|
Gholami K, Seyedjafari E, Mahdavi FS, Naghdipoor M, Mesbah G, Zahmatkesh P, Akbarzadehmoallemkolaei M, Baghdadabad LZ, Pandian SK, Meilika KN, Aghamir SMK. The Effect of Multilayered Electrospun PLLA Nanofibers Coated with Human Amnion or Bladder ECM Proteins on Epithelialization and Smooth Muscle Regeneration in the Rabbit Bladder. Macromol Biosci 2024; 24:e2300308. [PMID: 37931180 DOI: 10.1002/mabi.202300308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/25/2023] [Indexed: 11/08/2023]
Abstract
Nanofibrous scaffolds have attracted much attention in bladder reconstruction approaches due to their excellent mechanical properties. In addition, their biological properties can be improved by combination with biological materials. Taking into account the advantages of nanofibrous scaffolds and decellularized extracellular matrix (dECM) in tissue engineering, scaffolds of poly-L-lactic acid (PLLA) coated with decellularized human amnion membrane (hAM) or sheep bladder (SB)-derived ECM proteins are developed (amECM-coated PLLA and sbECM-coated PLLA, respectively). The bladder regenerative potential of modified electrospun PLLA scaffolds is investigated in rabbits. The presence of ECM proteins is confirmed on the nanofibers' surface. Coating the surface of the PLLA nanofibers improves cell adhesion and proliferation. Histological and immunohistochemical evaluations show that rabbits subjected to cystoplasty with a multilayered PLLA scaffold show de novo formation and maturation of the multilayered urothelial layer. However, smooth muscle bundles (myosin heavy chain [MHC] and α-smooth muscle actin [α-SMA] positive) are detected only in ECM-coated PLLA groups. All groups show no evidence of a diverticulumor fistula in the urinary bladder. These results suggest that the biofunctionalization of electrospun PLLA nanofibers with ECM proteins can be a promising option for bladder tissue engineering. Furthermore, hAM can also replace animal-sourced ECM proteins in bladder tissue regeneration approaches.
Collapse
Affiliation(s)
- Keykavoos Gholami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, 1416753955, Iran
| | - Fatemeh Sadat Mahdavi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, 1416753955, Iran
| | - Mehdi Naghdipoor
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Mesbah
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- AshianGanoTeb Biopharmaceutical Company, Golestan University of Medical Sciences, Gorgan, Iran
| | - Parisa Zahmatkesh
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Kirolos N Meilika
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 1416753955, USA
| | | |
Collapse
|
10
|
Guo X, Liu B, Zhang Y, Cheong S, Xu T, Lu F, He Y. Decellularized extracellular matrix for organoid and engineered organ culture. J Tissue Eng 2024; 15:20417314241300386. [PMID: 39611117 PMCID: PMC11603474 DOI: 10.1177/20417314241300386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024] Open
Abstract
The repair and regeneration of tissues and organs using engineered biomaterials has attracted great interest in tissue engineering and regenerative medicine. Recent advances in organoids and engineered organs technologies have enabled scientists to generate 3D tissue that recapitulate the structural and functional characteristics of native organs, opening up new avenues in regenerative medicine. The matrix is one of the most important aspects for improving organoids and engineered organs construction. However, the clinical application of these techniques remained a big challenge because current commercial matrix does not represent the complexity of native microenvironment, thereby limiting the optimal regenerative capacity. Decellularized extracellular matrix (dECM) is expected to maintain key native matrix biomolecules and is believed to hold enormous potential for regenerative medicine applications. Thus, it is worth investigating whether the dECM can be used as matrix for improving organoid and engineered organs construction. In this review, the characteristics of dECM and its preparation method were summarized. In addition, the present review highlights the applications of dECM in the fabrication of organoids and engineered organs.
Collapse
Affiliation(s)
- Xiaoxu Guo
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Boxun Liu
- Research and Development Department, Huamei Biotech Co. Ltd., Shenzhen, China
| | - Yi Zhang
- Research and Development Department, Huamei Biotech Co. Ltd., Shenzhen, China
| | - Sousan Cheong
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Xu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, People’s Republic of China
- Bio-intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen, People’s Republic of China
| | - Feng Lu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunfan He
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Li Y, Chen Y, Wu W, Li N, Hua J. MMPs, ADAMs and ADAMTSs are associated with mammalian sperm fate. Theriogenology 2023; 200:147-154. [PMID: 36842259 DOI: 10.1016/j.theriogenology.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/19/2022] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
Metalloproteinases include matrix metalloproteinases and disintegrin metalloproteinases. They are important members of the ECM degradation and reconstruction process and are associated with tissue development and disease. The ECM is a three-dimensional network of large molecules consisting of a variety of proteins. It is a physical scaffold for organs, and all types of cells can be found within the ECM. The testicle, where sperm are produced, is an organ that is constantly in dynamic flux. Metalloproteinases can regulate testicular tissue development and the maturation of sperm by affecting the ECM. Metalloproteinase disorders can lead to cryptorchidism, azoospermia, poor semen quality and other diseases. As a member of the metalloproteinase family, ADAMTS plays an important role in testicular slippage to the scrotum. ADAM is involved in the fertilization process, and excessive MMP can damage the BTB. In the testis, metalloproteinase stability represents the stability of the extracellular microenvironment in which germ cells are located and is associated with reproductive function. Metalloproteinases have a definite relationship with male reproduction, but the underlying mechanism is still unclear. This paper summarizes the literature on various metalloproteinases in testicular tissue physiology and pathology to elucidate their role in reproductive function and male reproductive mechanisms.
Collapse
Affiliation(s)
- Yunxiang Li
- College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China; Key Laboratory of Livestock Biology, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Yuguang Chen
- College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China; Key Laboratory of Livestock Biology, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Wenping Wu
- College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China; Key Laboratory of Livestock Biology, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Na Li
- College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China; Key Laboratory of Livestock Biology, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| | - Jinlian Hua
- College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China; Key Laboratory of Livestock Biology, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| |
Collapse
|
12
|
Qi Y, Wang C, Wang Q, Zhou F, Li T, Wang B, Su W, Shang D, Wu S. A simple, quick, and cost-effective strategy to fabricate polycaprolactone/silk fibroin nanofiber yarns for biotextile-based tissue scaffold application. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111863] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|