1
|
Mullai P, Sambavi SM, Vishali S, Dharmalingam K, Sutha S, Dinesh S, Anandhi T, Al Noman MA, Bilyaminu AM, James A. An integrated review on the role of different biocatalysts, process parameters, bioreactor technologies and data-driven predictive models for upgrading biogas. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125508. [PMID: 40327925 DOI: 10.1016/j.jenvman.2025.125508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/28/2025] [Accepted: 04/21/2025] [Indexed: 05/08/2025]
Abstract
As energy consumption and waste generation from human activities continue to rise, the technology of anaerobic digestion (AD), which converts waste into bioenergy, has gained popularity. Biogas produced from AD commonly contains 60 % CH4, 40 % CO2 and a minor fraction of impurities. Currently, several anaerobic reactors have been designed to upgrade the biogas with biomethane content above 90 %. This review summarizes the current trends in the biological upgradation of biogas from a bio-circular economy perspective to achieve sustainable energy goals. Examples of applications reporting the latest advancements in treating industrial effluents using high-rate anaerobic reactors have been mentioned. The integrated anaerobic-aerobic hybrid reactor offers a solution to the limitations of traditional methods in treating diverse effluents. A special focus on biological upgradation techniques such as in-situ, ex-situ, and hybrid mechanisms have been briefed. The key advantage of hybrid upgradation is its ability to address the pH rise during in-situ process. Additionally, the applications of artificial neural networks and optimization to upgrade biogas production have been discussed. The review concludes with future research directives with emphasis on the economic viability of the approaches.
Collapse
Affiliation(s)
- P Mullai
- Department of Chemical Engineering, Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| | - S M Sambavi
- Department of Chemical and Biological Engineering, Energy Engineering with Industrial Management, University of Sheffield, Sheffield, United Kingdom.
| | - S Vishali
- Department of Chemical Engineering, SRM Institute of Science and Engineering, Kattankulathur, 603 203, Tamil Nadu, India.
| | - K Dharmalingam
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Gandipet, Hyderabad, Telangana, India.
| | - S Sutha
- Department of Instrumentation Engineering, Madras Institute of Technology, Anna University, Chromepet, Chennai, 600044, Tamil Nadu, India.
| | - S Dinesh
- Department of Chemical Engineering, Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| | - T Anandhi
- Department of Electronics and Instrumentation Engineering, Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| | - Md Abdullah Al Noman
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands.
| | - Abubakar M Bilyaminu
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands.
| | - Anina James
- J & K Pocket, Dilshad Garden, Delhi, 110095, India.
| |
Collapse
|
2
|
Nizzy AM, Kannan S. A review on the conversion of cassava wastes into value-added products towards a sustainable environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69223-69240. [PMID: 35962891 DOI: 10.1007/s11356-022-22500-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The solid and liquid wastes generated from cassava-based industries are organic and acidic in nature, which leads to various global concerns-primarily global warming and biodiversity loss. But the conversion of these wastes into value-added products associated with environmental pollution control contributes to sustainable development. Generally, the thermochemical process such as pyrolysis and gasification and biochemical processes such as anaerobic digestion have been applied for the conversion of cassava waste into value-added products. This review addresses the valorization of cassava wastes, which fulfill almost all needs of the hour, such as energy (biofuel), wastewater treatment (adsorbents), bioplastics, starch nanoparticles, organic acid production, and antimicrobial agents. The major aim of this paper is to analyze and provide the disclosure of the efficiency of cassava-based industrial waste as a source to minimize the problem associated with conventional fossil fuels and through which mitigate the impact of global warming and climate change. Furthermore, recent research and achievements in the valorization of cassava waste have been highlighted.
Collapse
Affiliation(s)
- Albert Mariathankam Nizzy
- Department of Environmental Studies, School of Energy Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
| | - Suruli Kannan
- Department of Environmental Studies, School of Energy Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| |
Collapse
|