1
|
Ma J, Sui F, Liu Y, Yuan M, Dang H, Liu R, Shi B, Hou P. Sorafenib decreases glycemia by impairing hepatic glucose metabolism. Endocrine 2022; 78:446-457. [PMID: 36205915 DOI: 10.1007/s12020-022-03202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Sorafenib has been reported to reduce blood glucose levels in diabetic and non-diabetic patients in previous retrospective studies. However, the mechanism of which the hypoglycemic effects of sorafenib is not clearly explored. In this study, we investigated the effect of sorafenib on blood glucose levels in diabetic and normal mice and explored the possible mechanism. METHODS We established a mouse model of type 2 diabetes by a high-fat diet combined with a low-dose of streptozotocin (STZ), to identify the hypoglycemic effect of sorafenib in different mice. Glucose tolerance, insulin tolerance and pyruvate tolerance tests were done after daily gavage with sorafenib to diabetic and control mice. To explore the molecular mechanism by which sorafenib regulates blood glucose levels, hepatic glucose metabolism signaling was studied by a series of in vivo and in vitro experiments. RESULTS Sorafenib reduced blood glucose levels in both control and diabetic mice, particularly in the latter. The diabetic mice exhibited improved glucose and insulin tolerance after sorafenib treatment. Further studies showed that the expressions of gluconeogenesis-related enzymes, such as PCK1, G6PC and PCB, were significantly decreased upon sorafenib treatment. Mechanistically, sorafenib downregulates the expression of c-MYC downstream targets PCK1, G6PC and PCB through blocking the ERK/c-MYC signaling pathway, thereby playing its hypoglycemic effect by impairing hepatic glucose metabolism. CONCLUSION Sorafenib reduces blood glucose levels through downregulating gluconeogenic genes, especially in diabetic mice, suggesting the patients with T2DM when treated with sorafenib need more emphasis in monitoring blood glucose to avoid unnecessary hypoglycemia.
Collapse
Affiliation(s)
- Jingjing Ma
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Fang Sui
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Yan Liu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Mengmeng Yuan
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Hui Dang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Rui Liu
- Department of Radio-Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China.
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China.
| |
Collapse
|
2
|
Liang F, Zhang K, Ma W, Zhan H, Sun Q, Xie L, Zhao Z. Impaired autophagy and mitochondrial dynamics are involved in Sorafenib-induced cardiomyocyte apoptosis. Toxicology 2022; 481:153348. [DOI: 10.1016/j.tox.2022.153348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 02/04/2023]
|
3
|
Karbownik A, Szkutnik-Fiedler D, Grabowski T, Wolc A, Stanisławiak-Rudowicz J, Jaźwiec R, Grześkowiak E, Szałek E. Pharmacokinetic Drug Interaction Study of Sorafenib and Morphine in Rats. Pharmaceutics 2021; 13:pharmaceutics13122172. [PMID: 34959453 PMCID: PMC8707786 DOI: 10.3390/pharmaceutics13122172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 12/02/2022] Open
Abstract
A combination of the tyrosine kinase inhibitor—sorafenib—and the opioid analgesic—morphine—can be found in the treatment of cancer patients. Since both are substrates of P-glycoprotein (P-gp), and sorafenib is also an inhibitor of P-gp, their co-administration may affect their pharmacokinetics, and thus the safety and efficacy of cancer therapy. Therefore, the aim of this study was to evaluate the potential pharmacokinetic drug–drug interactions between sorafenib and morphine using an animal model. The rats were divided into three groups that Received: sorafenib and morphine (ISOR+MF), sorafenib (IISOR), and morphine (IIIMF). Morphine caused a significant increase in maximum plasma concentrations (Cmax) and the area under the plasma concentration–time curves (AUC0–t, and AUC0–∞) of sorafenib by 108.3 (p = 0.003), 55.9 (p = 0.0115), and 62.7% (p = 0.0115), respectively. Also, the Cmax and AUC0–t of its active metabolite—sorafenib N-oxide—was significantly increased in the presence of morphine (p = 0.0022 and p = 0.0268, respectively). Sorafenib, in turn, caused a significant increase in the Cmax of morphine (by 0.5-fold, p = 0.0018). Moreover, in the presence of sorafenib the Cmax, AUC0–t, and AUC0–∞ of the morphine metabolite M3G increased by 112.62 (p < 0.0001), 46.82 (p = 0.0124), and 46.78% (p = 0.0121), respectively. Observed changes in sorafenib and morphine may be of clinical significance. The increased exposure to both drugs may improve the response to therapy in cancer patients, but on the other hand, increase the risk of adverse effects.
Collapse
Affiliation(s)
- Agnieszka Karbownik
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, 14 Św. Marii Magdaleny Str., 61-861 Poznań, Poland; (A.K.); (J.S.-R.); (E.G.); (E.S.)
| | - Danuta Szkutnik-Fiedler
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, 14 Św. Marii Magdaleny Str., 61-861 Poznań, Poland; (A.K.); (J.S.-R.); (E.G.); (E.S.)
- Correspondence: ; Tel.: +48-6166-87865
| | - Tomasz Grabowski
- Preclinical Development, Polpharma Biologics SA, Trzy Lipy 3, 80-172 Gdańsk, Poland;
| | - Anna Wolc
- Department of Animal Science, Iowa State University, 239E Kildee Hall, Ames, IA 50011, USA;
- Research and Development, Hy-Line International, 2583 240th Street, Dallas Center, IA 50063, USA
| | - Joanna Stanisławiak-Rudowicz
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, 14 Św. Marii Magdaleny Str., 61-861 Poznań, Poland; (A.K.); (J.S.-R.); (E.G.); (E.S.)
- Department of Gynecological Oncology, University Hospital of Lord’s Transfiguration, Poznań University of Medical Sciences, 84/86 Szamarzewskiego Str., 60-101 Poznań, Poland
| | - Radosław Jaźwiec
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics PAS, Polish Academy of Sciences, 5A Pawińskiego Str., 02-106 Warsaw, Poland;
| | - Edmund Grześkowiak
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, 14 Św. Marii Magdaleny Str., 61-861 Poznań, Poland; (A.K.); (J.S.-R.); (E.G.); (E.S.)
| | - Edyta Szałek
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, 14 Św. Marii Magdaleny Str., 61-861 Poznań, Poland; (A.K.); (J.S.-R.); (E.G.); (E.S.)
| |
Collapse
|
4
|
He X, Sun H, Jiang Q, Chai Y, Li X, Wang Z, Zhu B, You S, Li B, Hao J, Xin S. Hsa-miR-4277 Decelerates the Metabolism or Clearance of Sorafenib in HCC Cells and Enhances the Sensitivity of HCC Cells to Sorafenib by Targeting cyp3a4. Front Oncol 2021; 11:735447. [PMID: 34381736 PMCID: PMC8350395 DOI: 10.3389/fonc.2021.735447] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 12/18/2022] Open
Abstract
Increasing evidence has shown that the metabolism and clearance of molecular targeted agents, such as sorafenib, plays an important role in mediating the resistance of HCC cells to these agents. Metabolism of sorafenib is performed by oxidative metabolism, which is initially mediated by CYP3A4. Thus, targeting CYP3A4 is a promising approach to enhance the sensitivity of HCC cells to chemotherapeutic agents. In the present work, we examined the association between CYP3A4 and the prognosis of HCC patients receiving sorafenib. Using the online tool miRDB, we predicted that has-microRNA-4277 (miR-4277), an online miRNA targets the 3’UTR of the transcript of cyp3a4. Furthermore, overexpression of miR-4277 in HCC cells repressed the expression of CYP3A4 and reduced the elimination of sorafenib in HCC cells. Moreover, miR-4277 enhanced the sensitivity of HCC cells to sorafenib in vitro and in vivo. Therefore, our results not only expand our understanding of CYP3A4 regulation in HCC, but also provide evidence for the use of miR-4277 as a potential therapeutic in advanced HCC.
Collapse
Affiliation(s)
- Xi He
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Department of Liver Disease of Chinese PLA General Hospital, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huiwei Sun
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Institute of Infectious Disease, Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiyu Jiang
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Institute of Infectious Disease, Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yantao Chai
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Institute of Infectious Disease, Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaojuan Li
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Institute of Infectious Disease, Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhijie Wang
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Institute of Infectious Disease, Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bing Zhu
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Department of Liver Disease of Chinese PLA General Hospital, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shaoli You
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Department of Liver Disease of Chinese PLA General Hospital, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Boan Li
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Department of Clinical Laboratory, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Junfeng Hao
- Department of Nephrology, Jin Qiu Hospital of Liaoning Province/Geriatric Hospital of Liaoning Province, Shenyang, China
| | - Shaojie Xin
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Department of Liver Disease of Chinese PLA General Hospital, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Karbownik A, Szkutnik-Fiedler D, Czyrski A, Kostewicz N, Kaczmarska P, Bekier M, Stanisławiak-Rudowicz J, Karaźniewicz-Łada M, Wolc A, Główka F, Grześkowiak E, Szałek E. Pharmacokinetic Interaction between Sorafenib and Atorvastatin, and Sorafenib and Metformin in Rats. Pharmaceutics 2020; 12:pharmaceutics12070600. [PMID: 32605304 PMCID: PMC7408095 DOI: 10.3390/pharmaceutics12070600] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
The tyrosine kinase inhibitor sorafenib is the first-line treatment for patients with hepatocellular carcinoma (HCC), in which hyperlipidemia and type 2 diabetes mellitus (T2DM) may often coexist. Protein transporters like organic cation (OCT) and multidrug and toxin extrusion (MATE) are involved in the response to sorafenib, as well as in that to the anti-diabetic drug metformin or atorvastatin, used in hyperlipidemia. Changes in the activity of these transporters may lead to pharmacokinetic interactions, which are of clinical significance. The study aimed to assess the sorafenib−metformin and sorafenib−atorvastatin interactions in rats. The rats were divided into five groups (eight animals in each) that received sorafenib and atorvastatin (ISOR+AT), sorafenib and metformin (IISOR+MET), sorafenib (IIISOR), atorvastatin (IVAT), and metformin (VMET). Atorvastatin significantly increased the maximum plasma concentration (Cmax) and the area under the plasma concentration–time curve (AUC) of sorafenib by 134.4% (p < 0.0001) and 66.6% (p < 0.0001), respectively. Sorafenib, in turn, caused a significant increase in the AUC of atorvastatin by 94.0% (p = 0.0038) and its metabolites 2−hydroxy atorvastatin (p = 0.0239) and 4−hydroxy atorvastatin (p = 0.0002) by 55.3% and 209.4%, respectively. Metformin significantly decreased the AUC of sorafenib (p = 0.0065). The AUC ratio (IISOR+MET group/IIISOR group) for sorafenib was equal to 0.6. Sorafenib did not statistically significantly influence the exposure to metformin. The pharmacokinetic interactions observed in this study may be of clinical relevance in HCC patients with coexistent hyperlipidemia or T2DM.
Collapse
Affiliation(s)
- Agnieszka Karbownik
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, 61-861 Poznań, Poland; (D.S.-F.); (N.K.); (P.K.); (M.B.); (E.G.); (E.S.)
- Correspondence: ; Tel.: +48-61854-60000
| | - Danuta Szkutnik-Fiedler
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, 61-861 Poznań, Poland; (D.S.-F.); (N.K.); (P.K.); (M.B.); (E.G.); (E.S.)
| | - Andrzej Czyrski
- Department of Physical Pharmacy and Pharmacokinetics, Poznań University of Medical Sciences, 60-781 Poznań, Poland; (A.C.); (M.K.-Ł.); (F.G.)
| | - Natalia Kostewicz
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, 61-861 Poznań, Poland; (D.S.-F.); (N.K.); (P.K.); (M.B.); (E.G.); (E.S.)
| | - Paulina Kaczmarska
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, 61-861 Poznań, Poland; (D.S.-F.); (N.K.); (P.K.); (M.B.); (E.G.); (E.S.)
| | - Małgorzata Bekier
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, 61-861 Poznań, Poland; (D.S.-F.); (N.K.); (P.K.); (M.B.); (E.G.); (E.S.)
| | | | - Marta Karaźniewicz-Łada
- Department of Physical Pharmacy and Pharmacokinetics, Poznań University of Medical Sciences, 60-781 Poznań, Poland; (A.C.); (M.K.-Ł.); (F.G.)
| | - Anna Wolc
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA;
- Hy-Line International, Research and Development, Dallas Center, IA 50063, USA
| | - Franciszek Główka
- Department of Physical Pharmacy and Pharmacokinetics, Poznań University of Medical Sciences, 60-781 Poznań, Poland; (A.C.); (M.K.-Ł.); (F.G.)
| | - Edmund Grześkowiak
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, 61-861 Poznań, Poland; (D.S.-F.); (N.K.); (P.K.); (M.B.); (E.G.); (E.S.)
| | - Edyta Szałek
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, 61-861 Poznań, Poland; (D.S.-F.); (N.K.); (P.K.); (M.B.); (E.G.); (E.S.)
| |
Collapse
|