1
|
Bermudo-Peloche G, Del Rio B, Vicens-Zygmunt V, Bordas-Martinez J, Hernández M, Valenzuela C, Laporta R, Rigual Bobillo J, Portillo K, Millán-Billi P, Balcells E, Badenes-Bonet D, Bolivar S, Rodríguez-Portal JA, López Ramirez C, Tomás L, Fernández de Roitegi K, Sellarés J, Castillo D, González J, Barril S, Gutiérrez-Rodríguez Y, Caballero P, Alarcon J, Peñafiel J, Sanz-Santos J, Blavia R, Caupena C, Segovia P, Santos-Pérez S, Ferrer-Artola A, Badia MB, Hereu P, Fuentes M, Montes-Worboys A, Franquet T, Luburich P, Molina-Molina M. Pirfenidone in post-COVID-19 pulmonary fibrosis (FIBRO-COVID): a phase 2 randomised clinical trial. Eur Respir J 2025; 65:2402249. [PMID: 40154560 PMCID: PMC12018760 DOI: 10.1183/13993003.02249-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 01/09/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Patients with severe COVID-19 may develop lung fibrosis. Pirfenidone is an anti-fibrotic drug approved for idiopathic pulmonary fibrosis. The efficacy and safety of pirfenidone in patients with fibrotic interstitial lung changes after recovery from severe COVID-19 pneumonia were evaluated. METHODS This was a phase 2, double-blind, placebo-controlled, Spanish multicentre clinical trial. Patients were randomised to receive pirfenidone or placebo (2:1) for 24 weeks. The primary end-point was the proportion of patients that improved, considered when percentage change in forced vital capacity (FVC) was ≥10% and/or any reduction in the fibrotic score on chest high-resolution computed tomography (HRCT). Secondary end-points included health-related quality of life (HRQoL), exercise capacity and drug safety profile. RESULTS From 119 eligible patients, 113 were randomised and 103 were analysed (pirfenidone n=69 and placebo n=34). Most patients were male (73.5%) and were receiving low-dose prednisone; mean age was 63.7 years and mean body mass index was 29 kg·m-2. The percentage of patients that improved was similar in the pirfenidone and placebo groups (79.7% versus 82.3%, respectively). The mean predicted FVC increased by 12.74±20.6% with pirfenidone and 4.35±22.3% with placebo (p=0.071), and the HRCT (%) fibrotic score decreased by 5.44±3.69% with pirfenidone and 2.57±2.59% with placebo (p=0.52). Clinically meaningful improvement in HRQoL was not statistically different (55.2% in the pirfenidone group and 39.4% in the placebo group). Exercise capacity, adverse events and hospitalisations were similar between groups. No deaths were reported. CONCLUSIONS The overall improvements in lung function and HRCT fibrotic score after 6 months with pirfenidone were not significantly different than with placebo.
Collapse
Affiliation(s)
- Guadalupe Bermudo-Peloche
- Interstitial Lung Disease Unit, Respiratory Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- National Network of Research in Respiratory Diseases (CIBERES), Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Belén Del Rio
- Interstitial Lung Disease Unit, Radiology Department, Bellvitge University Hospital, University of Barcelona - L'Hospitalet de Llobregat, Barcelona, Spain
| | - Vanesa Vicens-Zygmunt
- Interstitial Lung Disease Unit, Respiratory Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- National Network of Research in Respiratory Diseases (CIBERES), Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Jaume Bordas-Martinez
- Interstitial Lung Disease Unit, Respiratory Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- National Network of Research in Respiratory Diseases (CIBERES), Barcelona, Spain
| | - Marta Hernández
- Interstitial Lung Disease Unit, Respiratory Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Claudia Valenzuela
- National Network of Research in Respiratory Diseases (CIBERES), Barcelona, Spain
- Interstitial Lung Disease Unit, Respiratory Department, Hospital La Princesa, Madrid, Spain
| | - Rosalía Laporta
- National Network of Research in Respiratory Diseases (CIBERES), Barcelona, Spain
- Respiratory Department, Hospital Puerta Hierro, Majadahonda, Spain
| | - Juan Rigual Bobillo
- Respiratory Department, Universidad de Alcalá-IRYCIS, Hospital Ramón y Cajal, Madrid, Spain
| | - Karina Portillo
- National Network of Research in Respiratory Diseases (CIBERES), Barcelona, Spain
- Respiratory Department, Hospital Germans Trias i Pujol, Badalona, Spain
| | | | - Eva Balcells
- National Network of Research in Respiratory Diseases (CIBERES), Barcelona, Spain
- Respiratory Department, Hospital del Mar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Diana Badenes-Bonet
- Respiratory Department, Hospital del Mar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Santi Bolivar
- Interstitial Lung Disease Unit, Radiology Department, Bellvitge University Hospital, University of Barcelona - L'Hospitalet de Llobregat, Barcelona, Spain
| | - José-Antonio Rodríguez-Portal
- National Network of Research in Respiratory Diseases (CIBERES), Barcelona, Spain
- Interstitial Lung Disease Unit, Respiratory Department, Hospital Virgen del Rocío, Sevilla, Spain
| | - Cecilia López Ramirez
- Interstitial Lung Disease Unit, Respiratory Department, Hospital Virgen del Rocío, Sevilla, Spain
| | - Laura Tomás
- Respiratory Department, Hospital Txagorritxu, Vitoria, Spain
| | | | - Jacobo Sellarés
- National Network of Research in Respiratory Diseases (CIBERES), Barcelona, Spain
- Interstitial Lung Disease Unit, Respiratory Department, Hospital Clínic, Barcelona, Spain
| | - Diego Castillo
- National Network of Research in Respiratory Diseases (CIBERES), Barcelona, Spain
- Respiratory Department, Hospital Sant Pau i Santa Creu, Barcelona, Spain
| | - Jessica González
- National Network of Research in Respiratory Diseases (CIBERES), Barcelona, Spain
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Silvia Barril
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Yasmina Gutiérrez-Rodríguez
- Interstitial Lung Disease Unit, Respiratory Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Paloma Caballero
- Interstitial Lung Disease Unit, Radiology Department, Hospital La Princesa, Madrid, Spain
| | - Javier Alarcon
- Interstitial Lung Disease Unit, Department of Radiology, Hospital Ramón y Cajal, Madrid, Spain
| | - Judith Peñafiel
- Department of Biostatistics, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jose Sanz-Santos
- Respiratory Department, Hospital Mutua Terrassa, Terrassa, Spain
| | - Rosana Blavia
- Respiratory Department, Hospital Moises Broggi, Sant Joan d'Espí, Spain
| | - Cristina Caupena
- Respiratory Department, Hospital General del Parc Sanitari Sant Joan de Dèu, Sant Boi de Llobregat, Spain
| | - Pilar Segovia
- Respiratory Department, Hospital de Figueres, Figueres, Spain
| | - Salud Santos-Pérez
- Interstitial Lung Disease Unit, Respiratory Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- National Network of Research in Respiratory Diseases (CIBERES), Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Anna Ferrer-Artola
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Department of Pharmacy, University Hospital of Bellvitge, Grupo de Investigación Farmacoterapia, Farmacogenética y Tecnología Farmacéutica, Programa de Sistema Digestivo, Diagnóstico, Farmacogenética, Enfermería y Prevención, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Maria B Badia
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Department of Pharmacy, University Hospital of Bellvitge, Grupo de Investigación Farmacoterapia, Farmacogenética y Tecnología Farmacéutica, Programa de Sistema Digestivo, Diagnóstico, Farmacogenética, Enfermería y Prevención, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pilar Hereu
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Clinical Pharmacology Department, Bellvitge University Hospital, IDIBELL, Clinical Research and Clinical Trial Unit-IDIBELL, University of Barcelona, Barcelona, Spain
| | - Mireya Fuentes
- Interstitial Lung Disease Unit, Respiratory Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- National Network of Research in Respiratory Diseases (CIBERES), Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Ana Montes-Worboys
- Interstitial Lung Disease Unit, Respiratory Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- National Network of Research in Respiratory Diseases (CIBERES), Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Tomás Franquet
- Department of Radiology, Hospital Sant Pau i Santa Creu, Barcelona, Spain
| | - Patricio Luburich
- National Network of Research in Respiratory Diseases (CIBERES), Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Interstitial Lung Disease Unit, Radiology Department, Bellvitge University Hospital, University of Barcelona - L'Hospitalet de Llobregat, Barcelona, Spain
| | - María Molina-Molina
- Interstitial Lung Disease Unit, Respiratory Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- National Network of Research in Respiratory Diseases (CIBERES), Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
2
|
Cuadrado A, Cazalla E, Bach A, Bathish B, Naidu SD, DeNicola GM, Dinkova-Kostova AT, Fernández-Ginés R, Grochot-Przeczek A, Hayes JD, Kensler TW, León R, Liby KT, López MG, Manda G, Shivakumar AK, Hakomäki H, Moerland JA, Motohashi H, Rojo AI, Sykiotis GP, Taguchi K, Valverde ÁM, Yamamoto M, Levonen AL. Health position paper and redox perspectives - Bench to bedside transition for pharmacological regulation of NRF2 in noncommunicable diseases. Redox Biol 2025; 81:103569. [PMID: 40059038 PMCID: PMC11970334 DOI: 10.1016/j.redox.2025.103569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a redox-activated transcription factor regulating cellular defense against oxidative stress, thereby playing a pivotal role in maintaining cellular homeostasis. Its dysregulation is implicated in the progression of a wide array of human diseases, making NRF2 a compelling target for therapeutic interventions. However, challenges persist in drug discovery and safe targeting of NRF2, as unresolved questions remain especially regarding its context-specific role in diseases and off-target effects. This comprehensive review discusses the dualistic role of NRF2 in disease pathophysiology, covering its protective and/or destructive roles in autoimmune, respiratory, cardiovascular, and metabolic diseases, as well as diseases of the digestive system and cancer. Additionally, we also review the development of drugs that either activate or inhibit NRF2, discuss main barriers in translating NRF2-based therapies from bench to bedside, and consider the ways to monitor NRF2 activation in vivo.
Collapse
Affiliation(s)
- Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Eduardo Cazalla
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Boushra Bathish
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Gina M DeNicola
- Department of Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Raquel Fernández-Ginés
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Thomas W Kensler
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Rafael León
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), 28007, Madrid, Spain
| | - Karen T Liby
- Indiana University School of Medicine, Department of Medicine, W. Walnut Street, Indianapolis, IN, 46202, USA
| | - Manuela G López
- Department of Pharmacology, School of Medicine, Universidad Autónoma Madrid, Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de La Princesa, Madrid, Spain; Instituto Teófilo Hernando, Madrid, Spain
| | - Gina Manda
- Radiobiology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | | | - Henriikka Hakomäki
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jessica A Moerland
- Indiana University School of Medicine, Department of Medicine, W. Walnut Street, Indianapolis, IN, 46202, USA
| | - Hozumi Motohashi
- Department of Medical Biochemistry, Graduate School of Medicine Tohoku University, Sendai, Japan; Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ana I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Keiko Taguchi
- Laboratory of Food Chemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan; Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas "Sols-Morreale" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Masayuki Yamamoto
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
3
|
Qian Q, Wu J, Wang C, Yang Z, Cheng Y, Zheng Y, Wang X, Wang H. 6-PPD triggered lipid metabolism disorder and inflammatory response in larval zebrafish (Danio rerio) by regulating PPARγ/NF-κB pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125785. [PMID: 39900129 DOI: 10.1016/j.envpol.2025.125785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/26/2025] [Accepted: 02/01/2025] [Indexed: 02/05/2025]
Abstract
As a synthetic rubber antioxidant, the environmental monitoring concentrations of N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6-PPD) have exceeded the risk threshold, attracting widespread attention. Although investigations into the harmful effects on zebrafish have commenced, a comprehensive exploration of its toxicological impacts and underlying molecular mechanisms remains to be conducted. By using zebrafish as a model, this study systematically evaluated 6-PPD-induced lipid metabolism disorders and inflammation response following environmental exposure. Bioinformatics analysis revealed that 6-PPD target genes enriched in the hepatitis B pathway, indicating potential hepatic toxicity via inflammatory pathways. Therefore, we hypothesize that 6-PPD could trigger hepatotoxicity through the crosstalk between lipid metabolism and inflammation. Further experiments substantiated this hypothesis by showing lipid accumulation in the liver following 6-PPD exposure, along with elevated triglyceride (TG) and total cholesterol (TC) levels, and imbalanced expression of lipid metabolism-related marker genes. Additionally, 6-PPD exposure induced the accumulation of reactive oxygen species (ROS) and inhibited the differentiation and maturation of immune cells, resulting in immune evasion. Most of these abnormalities were exacerbated in a dose-dependent manner with increasing concentrations of 6-PPD. The addition of the PPARγ pathway agonist puerarin (PUE) or NF-κB pathway inhibitor quinazoline (QNZ) to 6-PPD exposure group mitigated these toxic effects, validating our conjecture that lipid metabolism disorder and inflammatory responses may result from the regulation of the PPARγ/NF-κB pathway.
Collapse
Affiliation(s)
- Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ji Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Cuizhen Wang
- Sanquan College of Xinxiang Medical University, Xinxiang, 453513, China
| | - Zheng Yang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Ying Cheng
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yuansi Zheng
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
4
|
Majidpour M, Azizi SG, Davodabadi F, Sabeti Akbar-Abad M, Abdollahi Z, Sargazi S, Shahriari H. Recent advances in TGF-β signaling pathway in COVID-19 pathogenesis: A review. Microb Pathog 2025; 199:107236. [PMID: 39701478 DOI: 10.1016/j.micpath.2024.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
The coronavirus disease 2019 (COVID-19) has resulted in approximately 7.0 million fatalities between 2019 and 2022, underscoring a pressing need for comprehensive research into its underlying mechanisms and therapeutic avenues. A distinctive feature of severe COVID-19 is the dysregulated immune response characterized by excessive activation of immune cells and the consequent cytokine storms. Recent advancements in our understanding of cellular signaling pathways have illuminated the role of Transforming Growth Factor Beta (TGF-β) as a pivotal signaling molecule with significant implications for the pathogenesis of infectious diseases, including COVID-19. Emerging evidence reveals that TGF-β signaling, when activated by viral components or secondary pathways, adversely affects diverse cell types, particularly immune cells, and lung tissue, leading to complications such as pulmonary fibrosis. In our review article, we critically evaluate recent literature on the involvement of TGF-β signaling in the progression of COVID-19. We discuss a range of pharmacological interventions, including nintedanib, pirfenidone, corticosteroids, proton pump inhibitors, and histone deacetylase inhibitors, and their potential to modulate the TGF-β pathway in the context of COVID-19 treatment. Additionally, we explore ongoing clinical trials involving mesenchymal stem cells, low-dose radiation therapy, and artemisinin derivatives to assess their impact on TGF-β levels and subsequent clinical outcomes in COVID-19 patients. This review is particularly relevant at this juncture as the global health community continues to grapple with the ramifications of the COVID-19 pandemic, highlighting the urgent need for targeted therapeutic strategies aimed at TGF-β modulation to mitigate disease severity and improve patient outcomes.
Collapse
Affiliation(s)
- Mahdi Majidpour
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Seyed Ghader Azizi
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Fatemeh Davodabadi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahboobeh Sabeti Akbar-Abad
- Department of Clinical Biochemistry, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Zahra Abdollahi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Hossein Shahriari
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
5
|
Yu Y, Lin K, Wu H, Hu M, Yang X, Wang J, Grillari J, Chen J. Targeting senescent cells in aging and COVID-19: from cellular mechanisms to therapeutic opportunities. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:20. [PMID: 39358480 PMCID: PMC11447201 DOI: 10.1186/s13619-024-00201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
The COVID-19 pandemic has caused a global health crisis and significant social economic burden. While most individuals experience mild or non-specific symptoms, elderly individuals are at a higher risk of developing severe symptoms and life-threatening complications. Exploring the key factors associated with clinical severity highlights that key characteristics of aging, such as cellular senescence, immune dysregulation, metabolic alterations, and impaired regenerative potential, contribute to disruption of tissue homeostasis of the lung and worse clinical outcome. Senolytic and senomorphic drugs, which are anti-aging treatments designed to eliminate senescent cells or decrease the associated phenotypes, have shown promise in alleviating age-related dysfunctions and offer a novel approach to treating diseases that share certain aspects of underlying mechanisms with aging, including COVID-19. This review summarizes the current understanding of aging in COVID-19 progression, and highlights recent findings on anti-aging drugs that could be repurposed for COVID-19 treatment to complement existing therapies.
Collapse
Affiliation(s)
- Yuan Yu
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaixuan Lin
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Haoyu Wu
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Mingli Hu
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xuejie Yang
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jie Wang
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Johannes Grillari
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Molecular Biotechnology, BOKU University, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, 1200, Vienna, Austria
| | - Jiekai Chen
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
6
|
Soliman AM, Ghorab WM, Ghorab MM, ElKenawy NM, El-Sabbagh WA, Ramadan LA. Novel quinazoline sulfonamide-based scaffolds modulate methicillin-resistant Staphylococcus aureus (MRSA) pneumonia in immunodeficient irradiated model: Regulatory role of TGF-β. Bioorg Chem 2024; 150:107559. [PMID: 38905889 DOI: 10.1016/j.bioorg.2024.107559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024]
Abstract
A library of new quinazoline pharmacophores bearing benzenesulfonamide moiety was designed and synthesized. Compounds 3a-n were screened for their in vitro antimicrobial activity against eight multidrug-resistant clinical isolates. Compounds 3d and 3n exhibited prominent antibacterial activity, specifically against MRSA. After exhibiting relative in vitro and in vivo safety, compound 3n was selected to assess its anti-inflammatory activity displaying promising COX-2 inhibitory activity compared to Ibuprofen. In vivo experimental MRSA pneumonia model was conducted on immunodeficient (irradiated) mice to reveal the antimicrobial and anti-inflammatory responses of compound 3n compared to azithromycin (AZ). Treatment with compound 3n (10 and 20 mg/kg) as well as AZ resulted in a significant decrease in bacterial counts in lung tissues, suppression of serum C-reactive protein (CRP), lung interleukin-6 (IL-6), myeloperoxidase activity (MPO) and transforming growth factor-β (TGF-β). Compound 3n showed a non-significant deviation of lung TGF-β1 from normal values which in turn controlled the lung inflammatory status and impacted the histopathological results. Molecular docking of 3n showed promising interactions inside the active sites of TGF-β and COX-2. Our findings present a new dual-target quinazoline benzenesulfonamide derivative 3n, which possesses significant potential for treating MRSA-induced pneumonia in an immunocompromised state.
Collapse
Affiliation(s)
- Aiten M Soliman
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Walid M Ghorab
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Mostafa M Ghorab
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt.
| | - Nora M ElKenawy
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Walaa A El-Sabbagh
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Laila A Ramadan
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt; Pharmacology & Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Egypt
| |
Collapse
|
7
|
Aghajani Mir M. Illuminating the pathogenic role of SARS-CoV-2: Insights into competing endogenous RNAs (ceRNAs) regulatory networks. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 122:105613. [PMID: 38844190 DOI: 10.1016/j.meegid.2024.105613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
The appearance of SARS-CoV-2 in 2019 triggered a significant economic and health crisis worldwide, with heterogeneous molecular mechanisms that contribute to its development are not yet fully understood. Although substantial progress has been made in elucidating the mechanisms behind SARS-CoV-2 infection and therapy, it continues to rank among the top three global causes of mortality due to infectious illnesses. Non-coding RNAs (ncRNAs), being integral components across nearly all biological processes, demonstrate effective importance in viral pathogenesis. Regarding viral infections, ncRNAs have demonstrated their ability to modulate host reactions, viral replication, and host-pathogen interactions. However, the complex interactions of different types of ncRNAs in the progression of COVID-19 remains understudied. In recent years, a novel mechanism of post-transcriptional gene regulation known as "competing endogenous RNA (ceRNA)" has been proposed. Long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and viral ncRNAs function as ceRNAs, influencing the expression of associated genes by sequestering shared microRNAs. Recent research on SARS-CoV-2 has revealed that disruptions in specific ceRNA regulatory networks (ceRNETs) contribute to the abnormal expression of key infection-related genes and the establishment of distinctive infection characteristics. These findings present new opportunities to delve deeper into the underlying mechanisms of SARS-CoV-2 pathogenesis, offering potential biomarkers and therapeutic targets. This progress paves the way for a more comprehensive understanding of ceRNETs, shedding light on the intricate mechanisms involved. Further exploration of these mechanisms holds promise for enhancing our ability to prevent viral infections and develop effective antiviral treatments.
Collapse
Affiliation(s)
- Mahsa Aghajani Mir
- Deputy of Research and Technology, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
8
|
Etebar N, Naderpour S, Akbari S, Zali A, Akhlaghdoust M, Daghighi SM, Baghani M, Sefat F, Hamidi SH, Rahimzadegan M. Impacts of SARS-CoV-2 on brain renin angiotensin system related signaling and its subsequent complications on brain: A theoretical perspective. J Chem Neuroanat 2024; 138:102423. [PMID: 38705215 DOI: 10.1016/j.jchemneu.2024.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024]
Abstract
Cellular ACE2 (cACE2), a vital component of the renin-angiotensin system (RAS), possesses catalytic activity to maintain AngII and Ang 1-7 balance, which is necessary to prevent harmful effects of AngII/AT2R and promote protective pathways of Ang (1-7)/MasR and Ang (1-7)/AT2R. Hemostasis of the brain-RAS is essential for maintaining normal central nervous system (CNS) function. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a viral disease that causes multi-organ dysfunction. SARS-CoV-2 mainly uses cACE2 to enter the cells and cause its downregulation. This, in turn, prevents the conversion of Ang II to Ang (1-7) and disrupts the normal balance of brain-RAS. Brain-RAS disturbances give rise to one of the pathological pathways in which SARS-CoV-2 suppresses neuroprotective pathways and induces inflammatory cytokines and reactive oxygen species. Finally, these impairments lead to neuroinflammation, neuronal injury, and neurological complications. In conclusion, the influence of RAS on various processes within the brain has significant implications for the neurological manifestations associated with COVID-19. These effects include sensory disturbances, such as olfactory and gustatory dysfunctions, as well as cerebrovascular and brain stem-related disorders, all of which are intertwined with disruptions in the RAS homeostasis of the brain.
Collapse
Affiliation(s)
- Negar Etebar
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy - Eastern Mediterranean University Famagusta, North Cyprus via Mersin 10, Turkey
| | - Saghi Naderpour
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy - Eastern Mediterranean University Famagusta, North Cyprus via Mersin 10, Turkey
| | - Setareh Akbari
- Neuroscience and Research Committee, School of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meisam Akhlaghdoust
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; USERN Office, Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mojtaba Daghighi
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Matin Baghani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Sefat
- Department of Biomedical Engineering, School of Engineering, University of Bradford, Bradford, UK
| | - Seyed Hootan Hamidi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Acharya BM Reddy College of Pharmacy, Rajiv Gandhi University of Health Sciences, Bangalore, India
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Wong M, Gain C, Sharma MB, Fotooh Abadi L, Hugo C, Vassilopoulos H, Daskou M, Fishbein GA, Kelesidis T. Severe Acute Respiratory Syndrome Coronavirus 2 Infection Alters Mediators of Lung Tissue Remodeling In Vitro and In Vivo. J Infect Dis 2024; 229:1372-1381. [PMID: 38109685 DOI: 10.1093/infdis/jiad536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Altered mediators of airway tissue remodeling such as matrix metalloproteinases (MMPs) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may contribute to morbidity in coronavirus disease 2019 (COVID-19); however, the differential impact of SARS-CoV-2 variants of concern (VOCs) on MMPs is unknown. METHODS Using both in vitro human airway cell culture model and in vivo transgenic mouse model of SARS-CoV-2 infection, we studied the differential effect of SARS-CoV-2 VOCs on expression of key MMPs and inflammatory mediators in airway cells and tissues. RESULTS The most consistent findings with all SARS-CoV-2 variants in infected compared to uninfected human bronchial epithelial cell air-liquid interface cultures were the SARS-CoV-2-induced increases in MMP-12 and tissue inhibitor of MMPs. Infection with both SARS-CoV-2 wild type and SARS-CoV-2 Delta variant over 3 days postinfection (dpi) and with Beta variant over 7 dpi increased lung tissue levels of MMP-9 compared to uninfected mice. Overall, SARS-CoV-2 variants had differential dose-dependent impact on secretion of MMP-1, MMP-2, MMP-9, and MMP-12 that varied at the protein versus the gene level and in the early noninflammatory compared to late inflammatory phase of infection. CONCLUSIONS We provide novel mechanistic insight that the differential impact of SARS-CoV-2 variants on severity of COVID-19 may partially be attributed to unique changes in MMPs.
Collapse
Affiliation(s)
- Michael Wong
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Chandrima Gain
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Madhav B Sharma
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Leila Fotooh Abadi
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
- Division of Infectious Diseases, Department of Medicine, University of Texas Southwestern, Dallas
| | - Cristelle Hugo
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Hariclea Vassilopoulos
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Maria Daskou
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Gregory A Fishbein
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles
| | - Theodoros Kelesidis
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
- Division of Infectious Diseases, Department of Medicine, University of Texas Southwestern, Dallas
| |
Collapse
|
10
|
Elkoshi Z. TGF-β, IL-1β, IL-6 levels and TGF-β/Smad pathway reactivity regulate the link between allergic diseases, cancer risk, and metabolic dysregulations. Front Immunol 2024; 15:1371753. [PMID: 38629073 PMCID: PMC11019030 DOI: 10.3389/fimmu.2024.1371753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
The risk of cancer is higher in patients with asthma compared to those with allergic rhinitis for many types of cancer, except for certain cancers where a contrasting pattern is observed. This study offers a potential explanation for these observations, proposing that the premalignant levels of circulating transforming growth factor-β (TGF-β), IL-1β, and IL-6 as well as the reactivity of the TGF-β/Smad signaling pathway at the specific cancer site, are crucial factors contributing to the observed disparities. Circulating TGF-β, IL- β and IL-6 levels also help clarify why asthma is positively associated with obesity, Type 2 diabetes, hypertension, and insulin resistance, whereas allergic rhinitis is negatively linked to these conditions. Furthermore, TGF-β/Smad pathway reactivity explains the dual impact of obesity, increasing the risk of certain types of cancer while offering protection against other types of cancer. It is suggested that the association of asthma with cancer and metabolic dysregulations is primarily linked to the subtype of neutrophilic asthma. A binary classification of TGF-β activity as either high (in the presence of IL-1β and IL-6) or low (in the presence or absence of IL-1β and IL-6) is proposed to differentiate between allergy patients prone to cancer and metabolic dysregulations and those less prone. Glycolysis and oxidative phosphorylation, the two major metabolic pathways utilized by cells for energy exploitation, potentially underlie this dichotomous classification by reprogramming metabolic pathways in immune cells.
Collapse
Affiliation(s)
- Zeev Elkoshi
- Research and Development Department, Taro Pharmaceutical Industries Ltd, Haifa, Israel
| |
Collapse
|
11
|
Xu Y, Ying L, Lang JK, Hinz B, Zhao R. Modeling mechanical activation of macrophages during pulmonary fibrogenesis for targeted anti-fibrosis therapy. SCIENCE ADVANCES 2024; 10:eadj9559. [PMID: 38552026 PMCID: PMC10980276 DOI: 10.1126/sciadv.adj9559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/23/2024] [Indexed: 04/01/2024]
Abstract
Pulmonary fibrosis is an often fatal lung disease. Immune cells such as macrophages were shown to accumulate in the fibrotic lung, but their contribution to the fibrosis development is unclear. To recapitulate the involvement of macrophages in the development of pulmonary fibrosis, we developed a fibrotic microtissue model with cocultured human macrophages and fibroblasts. We show that profibrotic macrophages seeded on topographically controlled stromal tissues became mechanically activated. The resulting co-alignment of macrophages, collagen fibers, and fibroblasts promoted widespread fibrogenesis in micro-engineered lung tissues. Anti-fibrosis treatment using pirfenidone disrupts the polarization and mechanical activation of profibrotic macrophages, leading to fibrosis inhibition. Pirfenidone inhibits the mechanical activation of macrophages by suppressing integrin αMβ2 and Rho-associated kinase 2. These results demonstrate a potential pulmonary fibrogenesis mechanism at the tissue level contributed by macrophages. The cocultured microtissue model is a powerful tool to study the immune-stromal cell interactions and the anti-fibrosis drug mechanism.
Collapse
Affiliation(s)
- Ying Xu
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Linxuan Ying
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Jennifer K. Lang
- Division of Cardiovascular Medicine and the Clinical and Translational Research Center, University at Buffalo, State University of New York; Veterans Affairs Western New York Health Care System, University at Buffalo, State University of New York; Department of Biomedical Engineering, University at Buffalo, State University of New York; Department of Medicine, University at Buffalo, State University of New York; Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Ruogang Zhao
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
12
|
Akhmaltdinova L, Mekhantseva I, Turgunova L, Kostinov M, Zhumadilova Z, Turmukhambetova A. Association of soluble PD-L1 and NLR combination with 1-Year mortality in patients with COVID-19. Int Immunopharmacol 2024; 129:111600. [PMID: 38325048 DOI: 10.1016/j.intimp.2024.111600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
PURPOSE Understanding the relationship between patient immune characteristics, disease severity, and mortality represents a critical step in the fight against COVID-19. Elevated levels of programmed death ligand-1 (PD-L1) and Neutrophil-lymphocyte ratio (NLR) are linked to increased severity of acute COVID-19 in patients. This study aimed to investigate the association of the combination of sPD-L1 and NLR with 1-year Mortality in patients with COVID-19. METHODS A prospective study was conducted involving patients with COVID-19 in Karaganda, Kazakhstan. The level of sPD-L1 in the blood serum was evaluated by ELISA. The effect of biomarkers on the development of mortality was analyzed with multivariate regression. RESULTS The risk of mortality within one year HR was 2.46 if the plasma sPD-L1 value of more than 277.13 pg/ml, and for NLR more than 2.46 HR was 2.87. The model of combining sPD-L1 and NLR resulted in an improvement in the predictive accuracy of the Hazard Ratio 7.6 (95 % CI: 3.02-19.11). CONCLUSION The combination of two immune-mediated markers (sPD-L1 and NLR), which reflect the systemic inflammatory balance of activation and exhaustion, can complement each other and improve the assessment of the risk of death in patients with COVID-19.
Collapse
Affiliation(s)
| | - Irina Mekhantseva
- Karaganda Medical University, Scientific and Research Center, Karaganda, Kazakhstan.
| | - Lyudmila Turgunova
- Karaganda Medical University, Scientific and Research Center, Karaganda, Kazakhstan.
| | - Mikhail Kostinov
- I.I. Mechnikov Research Institute of Vaccines and Sera, Sechenov First Moscow State Medical University, Department of Epidemiology and Modern Vaccination Technologies, Moscow, Russia.
| | - Zhibek Zhumadilova
- Karaganda Medical University, Scientific and Research Center, Karaganda, Kazakhstan.
| | - Anar Turmukhambetova
- Karaganda Medical University, Scientific and Research Center, Karaganda, Kazakhstan.
| |
Collapse
|
13
|
Zhou Q, Zhang L, Dong Y, Wang Y, Zhang B, Zhou S, Huang Q, Wu T, Chen G. The role of SARS-CoV-2-mediated NF-κB activation in COVID-19 patients. Hypertens Res 2024; 47:375-384. [PMID: 37872376 PMCID: PMC10838770 DOI: 10.1038/s41440-023-01460-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
The SARS-CoV-2 pandemic, now in its third year, has had a profound impact on public health and economics all over the world. Different populations showed varied susceptibility to this virus and mortality after infection. Clinical and laboratory data revealed that the uncontrolled inflammatory response plays an important role in their poor outcome. Herein, we summarized the role of NF-κB activation during SARS-CoV-2 invasion and replication, particularly the angiotensin-converting enzyme 2 (ACE2)-mediated NF-κB activation. Then we summarized the COVID-19 drugs' impact on NF-κB activation and their problems. A favorable prognosis is linked with timely treatment with NF-κB activation inhibitors, such as TNFα, IL-1β, and IL-6 monoclonal antibodies. However, further clinical researches are still required to clarify the time window, dosage of administration, contraindication, and potential side effects of these drugs, particularly for COVID-19 patients with hypertension, hyperglycemia, diabetes, or other chronic diseases.
Collapse
Affiliation(s)
- Qiaoqiao Zhou
- School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
- Hubei Key Laboratory of Purification and Application of Plant Anticancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
| | - Lei Zhang
- School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
- Hubei Key Laboratory of Purification and Application of Plant Anticancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
- Hubei Environmental Purification Material Science and Engineering Technology Research Center, Hubei University of Education, Wuhan, 430205, China
| | - Yanming Dong
- School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yuan Wang
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Bin Zhang
- School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
- Hubei Key Laboratory of Purification and Application of Plant Anticancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
| | - Shiyi Zhou
- School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
- Hubei Key Laboratory of Purification and Application of Plant Anticancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
| | - Qing Huang
- School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
- Hubei Key Laboratory of Purification and Application of Plant Anticancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
- Hubei Environmental Purification Material Science and Engineering Technology Research Center, Hubei University of Education, Wuhan, 430205, China
| | - Tian Wu
- School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China
- Hubei Environmental Purification Material Science and Engineering Technology Research Center, Hubei University of Education, Wuhan, 430205, China
| | - Gongxuan Chen
- School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China.
- Hubei Key Laboratory of Purification and Application of Plant Anticancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, Hubei, 430205, PR China.
- Hubei Environmental Purification Material Science and Engineering Technology Research Center, Hubei University of Education, Wuhan, 430205, China.
| |
Collapse
|
14
|
Huang Q, Le Y, Li S, Bian Y. Signaling pathways and potential therapeutic targets in acute respiratory distress syndrome (ARDS). Respir Res 2024; 25:30. [PMID: 38218783 PMCID: PMC10788036 DOI: 10.1186/s12931-024-02678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common condition associated with critically ill patients, characterized by bilateral chest radiographical opacities with refractory hypoxemia due to noncardiogenic pulmonary edema. Despite significant advances, the mortality of ARDS remains unacceptably high, and there are still no effective targeted pharmacotherapeutic agents. With the outbreak of coronavirus disease 19 worldwide, the mortality of ARDS has increased correspondingly. Comprehending the pathophysiology and the underlying molecular mechanisms of ARDS may thus be essential to developing effective therapeutic strategies and reducing mortality. To facilitate further understanding of its pathogenesis and exploring novel therapeutics, this review provides comprehensive information of ARDS from pathophysiology to molecular mechanisms and presents targeted therapeutics. We first describe the pathogenesis and pathophysiology of ARDS that involve dysregulated inflammation, alveolar-capillary barrier dysfunction, impaired alveolar fluid clearance and oxidative stress. Next, we summarize the molecular mechanisms and signaling pathways related to the above four aspects of ARDS pathophysiology, along with the latest research progress. Finally, we discuss the emerging therapeutic strategies that show exciting promise in ARDS, including several pharmacologic therapies, microRNA-based therapies and mesenchymal stromal cell therapies, highlighting the pathophysiological basis and the influences on signal transduction pathways for their use.
Collapse
Affiliation(s)
- Qianrui Huang
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China
| | - Yue Le
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Shusheng Li
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China.
| | - Yi Bian
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China.
| |
Collapse
|
15
|
Al-Kuraishy HM, Al-Gareeb AI, Eldahshan OA, Abdelkhalek YM, El Dahshan M, Ahmed EA, Sabatier JM, Batiha GES. The possible role of nuclear factor erythroid-2-related factor 2 activators in the management of Covid-19. J Biochem Mol Toxicol 2024; 38:e23605. [PMID: 38069809 DOI: 10.1002/jbt.23605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/06/2023] [Accepted: 11/21/2023] [Indexed: 01/18/2024]
Abstract
COVID-19 is caused by a novel SARS-CoV-2 leading to pulmonary and extra-pulmonary manifestations due to oxidative stress (OS) development and hyperinflammation. COVID-19 is primarily asymptomatic though it may cause acute lung injury (ALI), acute respiratory distress syndrome (ARDS), systemic inflammation, and thrombotic events in severe cases. SARS-CoV-2-induced OS triggers the activation of different signaling pathways, which counterbalances this complication. One of these pathways is nuclear factor erythroid 2-related factor 2 (Nrf2), which induces a series of cellular interactions to mitigate SARS-CoV-2-mediated viral toxicity and OS-induced cellular injury. Nrf2 pathway inhibits the expression of pro-inflammatory cytokines and the development of cytokine storm in COVID-19. Therefore, Nrf2 activators may play an essential role in reducing SARS-CoV-2 infection-induced inflammation by suppressing NLRP3 inflammasome in COVID-19. Furthermore, Nrf2 activators can attenuate endothelial dysfunction (ED), renin-angiotensin system (RAS) dysregulation, immune thrombosis, and coagulopathy. Thus this mini-review tries to clarify the possible role of the Nrf2 activators in the management of COVID-19. Nrf2 activators could be an effective therapeutic strategy in the management of Covid-19. Preclinical and clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Iraq
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | | | - Magdy El Dahshan
- Department of Internal Medicine, Faculty of Medicine, Al Azhar University, Cairo, Egypt
| | - Eman A Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Jean-Marc Sabatier
- Institut de Neurophysiopathologie (INP), CNRS UMR 7051, Faculté des Sciences Médicales et Paramédicales, Aix-Marseille Université, Marseille, France
| | - Gaber E-S Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Egypt
| |
Collapse
|
16
|
Islam MA, Getz M, Macklin P, Ford Versypt AN. An agent-based modeling approach for lung fibrosis in response to COVID-19. PLoS Comput Biol 2023; 19:e1011741. [PMID: 38127835 PMCID: PMC10769079 DOI: 10.1371/journal.pcbi.1011741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/05/2024] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The severity of the COVID-19 pandemic has created an emerging need to investigate the long-term effects of infection on patients. Many individuals are at risk of suffering pulmonary fibrosis due to the pathogenesis of lung injury and impairment in the healing mechanism. Fibroblasts are the central mediators of extracellular matrix (ECM) deposition during tissue regeneration, regulated by anti-inflammatory cytokines including transforming growth factor beta (TGF-β). The TGF-β-dependent accumulation of fibroblasts at the damaged site and excess fibrillar collagen deposition lead to fibrosis. We developed an open-source, multiscale tissue simulator to investigate the role of TGF-β sources in the progression of lung fibrosis after SARS-CoV-2 exposure, intracellular viral replication, infection of epithelial cells, and host immune response. Using the model, we predicted the dynamics of fibroblasts, TGF-β, and collagen deposition for 15 days post-infection in virtual lung tissue. Our results showed variation in collagen area fractions between 2% and 40% depending on the spatial behavior of the sources (stationary or mobile), the rate of activation of TGF-β, and the duration of TGF-β sources. We identified M2 macrophages as primary contributors to higher collagen area fraction. Our simulation results also predicted fibrotic outcomes even with lower collagen area fraction when spatially-localized latent TGF-β sources were active for longer times. We validated our model by comparing simulated dynamics for TGF-β, collagen area fraction, and macrophage cell population with independent experimental data from mouse models. Our results showed that partial removal of TGF-β sources changed the fibrotic patterns; in the presence of persistent TGF-β sources, partial removal of TGF-β from the ECM significantly increased collagen area fraction due to maintenance of chemotactic gradients driving fibroblast movement. The computational findings are consistent with independent experimental and clinical observations of collagen area fractions and cell population dynamics not used in developing the model. These critical insights into the activity of TGF-β sources may find applications in the current clinical trials targeting TGF-β for the resolution of lung fibrosis.
Collapse
Affiliation(s)
- Mohammad Aminul Islam
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Michael Getz
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, United States of America
| | - Paul Macklin
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, United States of America
| | - Ashlee N. Ford Versypt
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
- Institute for Artificial Intelligence and Data Science, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| |
Collapse
|
17
|
Zivancevic-Simonovic S, Minic R, Cupurdija V, Stanojevic-Pirkovic M, Milosevic-Djordjevic O, Jakovljevic V, Mihaljevic O. Transforming growth factor beta 1 (TGF-β1) in COVID-19 patients: relation to platelets and association with the disease outcome. Mol Cell Biochem 2023; 478:2461-2471. [PMID: 36869188 PMCID: PMC9984293 DOI: 10.1007/s11010-023-04674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 02/07/2023] [Indexed: 03/05/2023]
Abstract
Transforming growth factor beta (TGF-β) is a ubiquitously distributed cytokine known to contribute to the pathogenesis of numerous pathological processes. The aim of this study was to measure serum concentrations of TGF-β1 in severely ill COVID-19 patients and to analyze its relationship with selected hematological and biochemical parameters and with the disease outcome. The study population included 53 COVID-19 patients with severe clinical expression of the disease and 15 control subjects. TGF-β1 was determined in serum samples and supernatants from PHA-stimulated whole blood cultures using ELISA assay. Biochemical and hematological parameters were analyzed using standard accepted methods. Our results showed that serum levels of TGF-β1 in COVID-19 patients and controls correlate with the platelet counts. Also, positive correlations of TGF-β1 with white blood cell and lymphocyte counts, platelet-to-lymphocyte (PLR) ratio, and fibrinogen level were shown, while negative correlations of this cytokine with platelet distribution width (PDW), D-dimer and activated partial thromboplastin time (a-PTT) values in COVID-19 patients were observed. The lower serum values of TGF-β1 were associated with the unfavorable outcome of COVID-19. In conclusion, TGF-β1 levels were strongly associated with platelet counts and unfavorable disease outcome of severely ill COVID-19 patients.
Collapse
Affiliation(s)
| | - Rajna Minic
- Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Vojislav Cupurdija
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Marijana Stanojevic-Pirkovic
- University Clinical Center Kragujevac, Kragujevac, Serbia
- Department of Biochemistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | | | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Olgica Mihaljevic
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
18
|
Hamad RS, Al-Kuraishy HM, Alexiou A, Papadakis M, Ahmed EA, Saad HM, Batiha GES. SARS-CoV-2 infection and dysregulation of nuclear factor erythroid-2-related factor 2 (Nrf2) pathway. Cell Stress Chaperones 2023; 28:657-673. [PMID: 37796433 PMCID: PMC10746631 DOI: 10.1007/s12192-023-01379-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/19/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a recent pandemic caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) leading to pulmonary and extra-pulmonary manifestations due to the development of oxidative stress (OS) and hyperinflammation. The underlying cause for OS and hyperinflammation in COVID-19 may be related to the inhibition of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulator of antioxidative responses and cellular homeostasis. The Nrf2 pathway inhibits the expression of pro-inflammatory cytokines and the development of cytokine storm and OS in COVID-19. Nrf2 activators can attenuate endothelial dysfunction (ED), renin-angiotensin system (RAS) dysregulation, immune thrombosis, and coagulopathy. Hence, this review aimed to reveal the potential role of the Nrf2 pathway and its activators in the management of COVID-19. As well, we tried to revise the mechanistic role of the Nrf2 pathway in COVID-19.
Collapse
Affiliation(s)
- Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, 31982, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, 12411, Egypt
| | - Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Eman A Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| |
Collapse
|
19
|
Islam MA, Getz M, Macklin P, Versypt ANF. An agent-based modeling approach for lung fibrosis in response to COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.10.03.510677. [PMID: 36238719 PMCID: PMC9558432 DOI: 10.1101/2022.10.03.510677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The severity of the COVID-19 pandemic has created an emerging need to investigate the long-term effects of infection on patients. Many individuals are at risk of suffering pulmonary fibrosis due to the pathogenesis of lung injury and impairment in the healing mechanism. Fibroblasts are the central mediators of extracellular matrix (ECM) deposition during tissue regeneration, regulated by anti-inflammatory cytokines including transforming growth factor beta (TGF-β). The TGF-β-dependent accumulation of fibroblasts at the damaged site and excess fibrillar collagen deposition lead to fibrosis. We developed an open-source, multiscale tissue simulator to investigate the role of TGF-β sources in the progression of lung fibrosis after SARS-CoV-2 exposure, intracellular viral replication, infection of epithelial cells, and host immune response. Using the model, we predicted the dynamics of fibroblasts, TGF-β, and collagen deposition for 15 days post-infection in virtual lung tissue. Our results showed variation in collagen area fractions between 2% and 40% depending on the spatial behavior of the sources (stationary or mobile), the rate of activation of TGF-β, and the duration of TGF-β sources. We identified M2 macrophages as primary contributors to higher collagen area fraction. Our simulation results also predicted fibrotic outcomes even with lower collagen area fraction when spatially-localized latent TGF-β sources were active for longer times. We validated our model by comparing simulated dynamics for TGF-β, collagen area fraction, and macrophage cell population with independent experimental data from mouse models. Our results showed that partial removal of TGF-β sources changed the fibrotic patterns; in the presence of persistent TGF-β sources, partial removal of TGF-β from the ECM significantly increased collagen area fraction due to maintenance of chemotactic gradients driving fibroblast movement. The computational findings are consistent with independent experimental and clinical observations of collagen area fractions and cell population dynamics not used in developing the model. These critical insights into the activity of TGF-β sources may find applications in the current clinical trials targeting TGF-β for the resolution of lung fibrosis. Author summary COVID-19 survivors are at risk of lung fibrosis as a long-term effect. Lung fibrosis is the excess deposition of tissue materials in the lung that hinder gas exchange and can collapse the whole organ. We identified TGF-β as a critical regulator of fibrosis. We built a model to investigate the mechanisms of TGF-β sources in the process of fibrosis. Our results showed spatial behavior of sources (stationary or mobile) and their activity (activation rate of TGF-β, longer activation of sources) could lead to lung fibrosis. Current clinical trials for fibrosis that target TGF-β need to consider TGF-β sources' spatial properties and activity to develop better treatment strategies.
Collapse
|
20
|
Chen Y, Yu X, Yan Z, Zhang S, Zhang J, Guo W. Role of epithelial sodium channel-related inflammation in human diseases. Front Immunol 2023; 14:1178410. [PMID: 37559717 PMCID: PMC10407551 DOI: 10.3389/fimmu.2023.1178410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/29/2023] [Indexed: 08/11/2023] Open
Abstract
The epithelial sodium channel (ENaC) is a heterotrimer and is widely distributed throughout the kidneys, blood vessels, lungs, colons, and many other organs. The basic role of the ENaC is to mediate the entry of Na+ into cells; the ENaC also has an important regulatory function in blood pressure, airway surface liquid (ASL), and endothelial cell function. Aldosterone, serum/glucocorticoid kinase 1 (SGK1), shear stress, and posttranslational modifications can regulate the activity of the ENaC; some ion channels also interact with the ENaC. In recent years, it has been found that the ENaC can lead to immune cell activation, endothelial cell dysfunction, aggravated inflammation involved in high salt-induced hypertension, cystic fibrosis, pseudohypoaldosteronism (PHA), and tumors; some inflammatory cytokines have been reported to have a regulatory role on the ENaC. The ENaC hyperfunction mediates the increase of intracellular Na+, and the elevated exchange of Na+ with Ca2+ leads to an intracellular calcium overload, which is an important mechanism for ENaC-related inflammation. Some of the research on the ENaC is controversial or unclear; we therefore reviewed the progress of studies on the role of ENaC-related inflammation in human diseases and their mechanisms.
Collapse
Affiliation(s)
- Yabin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- National Organ Transplantation (Liver &Kidney Transplantation) Physician Training Centre, Zhengzhou, China
- National Regional Medical Treatment Centre of Henan Organ Transplantation, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- National Organ Transplantation (Liver &Kidney Transplantation) Physician Training Centre, Zhengzhou, China
- National Regional Medical Treatment Centre of Henan Organ Transplantation, Zhengzhou, China
| | - Zhiping Yan
- Henan Organ Transplantation Centre, Zhengzhou, China
- Henan Engineering and Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
| | - Shuijun Zhang
- Henan Research Centre for Organ Transplantation, Zhengzhou, China
| | - Jiacheng Zhang
- Henan Key Laboratory for Digestive Organ Transplantation, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory for Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
| |
Collapse
|
21
|
Xu Y, Ying L, Lang JK, Hinz B, Zhao R. Modeling Mechanical Activation of Macrophages During Pulmonary Fibrogenesis for Targeted Anti-Fibrosis Therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549794. [PMID: 37503121 PMCID: PMC10370161 DOI: 10.1101/2023.07.19.549794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Pulmonary fibrosis, as seen in idiopathic pulmonary fibrosis (IPF) and COVID-induced pulmonary fibrosis, is an often-fatal lung disease. Increased numbers of immune cells such as macrophages were shown to accumulate in the fibrotic lung, but it is unclear how they contribute to the development of fibrosis. To recapitulate the macrophage mechanical activation in the fibrotic lung tissue microenvironment, we developed a fibrotic microtissue model with cocultured human macrophages and fibroblasts. We show that profibrotic macrophages seeded on topographically controlled stromal tissue constructs become mechanically activated. The resulting co-alignment of macrophages, collagen fibers and fibroblasts promote widespread fibrogenesis in micro-engineered lung tissues. Anti-fibrosis treatment using pirfenidone disrupts the polarization and mechanical activation of profibrotic macrophages, leading to fibrosis inhibition. Pirfenidone inhibits the mechanical activation of macrophages by suppressing integrin αMβ2 (CD11b/CD18) and Rho-associated kinase 2, which is a previously unknown mechanism of action of the drug. Together, these results demonstrate a potential pulmonary fibrogenesis mechanism at the tissue level contributed by mechanically activated macrophages. We propose the coculture, force-sensing microtissue model as a powerful tool to study the complex immune-stromal cell interactions and the mechanism of action of anti-fibrosis drugs.
Collapse
|
22
|
Lucane Z, Slisere B, Gersone G, Papirte S, Gailite L, Tretjakovs P, Kurjane N. Cytokine Response Following SARS-CoV-2 Antigen Stimulation in Patients with Predominantly Antibody Deficiencies. Viruses 2023; 15:v15051146. [PMID: 37243231 DOI: 10.3390/v15051146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Predominantly antibody deficiencies (PADs) are inborn disorders characterized by immune dysregulation and increased susceptibility to infections. Response to vaccination, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), may be impaired in these patients, and studies on responsiveness correlates, including cytokine signatures to antigen stimulation, are sparse. In this study, we aimed to describe the spike-specific cytokine response following whole-blood stimulation with SARS-CoV-2 spike peptides in patients with PAD (n = 16 with common variable immunodeficiency and n = 15 with selective IgA deficiency) and its relationship with the occurrence of coronavirus disease 2019 (COVID-19) during up to 10-month follow-up period. Spike-induced antibody and cytokine production was measured using ELISA (anti-spike IgG, IFN-γ) and xMAP technology (interleukin-1β (IL-1β), IL-4, IL-6, IL-10, IL-15, IL-17A, IL-21, TNF-α, TGF-β1). No difference was found in the production of cytokines between patients with PAD and controls. Anti-spike IgG and cytokine levels did not predict contraction of COVID-19. The only cytokine that distinguished between vaccinated and naturally infected unvaccinated PAD patients was IFN-γ (median 0.64 (IQR = 1.08) in vaccinated vs. 0.10 (IQR = 0.28) in unvaccinated). This study describes the spike-specific cytokine response to SARS-CoV-2 antigens, which is not predictive of contracting COVID-19 during the follow-up.
Collapse
Affiliation(s)
- Zane Lucane
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia
| | - Baiba Slisere
- The Joint Laboratory, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
- Department of Internal Diseases, Riga Stradins University, LV-1007 Riga, Latvia
| | - Gita Gersone
- Department of Human Physiology and Biochemistry, Riga Stradins University, LV-1007 Riga, Latvia
| | - Sindija Papirte
- Faculty of Medicine, Riga Stradins University, LV-1007 Riga, Latvia
| | - Linda Gailite
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, LV-1007 Riga, Latvia
| | - Peteris Tretjakovs
- Department of Human Physiology and Biochemistry, Riga Stradins University, LV-1007 Riga, Latvia
| | - Natalja Kurjane
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia
- Outpatient Clinic, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
- Outpatient Clinic, Children's Clinical University Hospital, LV-1004 Riga, Latvia
| |
Collapse
|
23
|
Bolívar-Marín S, Castro M, Losada-Floriano D, Cortés S, Perdomo-Celis F, Lastra G, Narváez CF. A Specific Pattern and Dynamics of Circulating Cytokines Are Associated with the Extension of Lung Injury and Mortality in Colombian Adults with Coronavirus Disease-19. J Interferon Cytokine Res 2023; 43:206-215. [PMID: 37103589 DOI: 10.1089/jir.2023.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
Increased systemic levels of inflammatory cytokines have been associated with the development of pathophysiologic events during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. To further explore differences in the pattern and dynamics of plasma cytokines in individuals with coronavirus disease-19 (COVID-19), and the relationship with disease mortality, here we evaluated the plasma levels of proinflammatory and regulatory cytokines in Colombian patient survivors and nonsurvivors of SARS-CoV-2 infection. Individuals with confirmed COVID-19, with other respiratory diseases requiring hospitalization, and healthy controls, were included. Plasma levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α, interferon-γ, IL-10, soluble tumor necrosis factor receptor I (sTNFRI), and transforming growth factor-β1 were measured by a bead-based assay or enzyme-linked immunosorbent assay and clinical, laboratory, and tomographic parameters were registered during hospitalization. The levels of most of the evaluated cytokines were increased in COVID-19 individuals relative to healthy controls. The levels of IL-6, IL-10, and sTNFRI were directly associated with the development of respiratory failure, immune dysregulation, and coagulopathy, as well as with COVID-19 mortality. Particularly, the early, robust, and persistent increase of circulating IL-6 characterized COVID-19 nonsurvivors, while survivors were able to counteract the inflammatory cytokine response. In addition, IL-6 systemic levels positively correlated with the tomographic extension of lung damage in individuals with COVID-19. Thus, an exacerbated inflammatory cytokine response, particularly mediated by IL-6 added to the inefficiency of regulatory cytokines, distinguishes COVID-19-associated tissue disturbances, severity, and mortality in Colombian adults.
Collapse
Affiliation(s)
- Sara Bolívar-Marín
- Programa de Medicina, División de Inmunología; Universidad Surcolombiana, Neiva, Huila, Colombia
| | - Marcela Castro
- Servicio de Neumología, E.S.E. Hospital Universitario de Neiva, Neiva, Huila, Colombia
- Área de Medicina Interna; Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| | | | - Santiago Cortés
- Servicio de Neumología, E.S.E. Hospital Universitario de Neiva, Neiva, Huila, Colombia
- Área de Medicina Interna; Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - Federico Perdomo-Celis
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Giovani Lastra
- Servicio de Neumología, E.S.E. Hospital Universitario de Neiva, Neiva, Huila, Colombia
- Área de Medicina Interna; Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - Carlos F Narváez
- Programa de Medicina, División de Inmunología; Universidad Surcolombiana, Neiva, Huila, Colombia
| |
Collapse
|
24
|
Treatment with quercetin inhibits SARS-CoV-2 N protein-induced acute kidney injury by blocking Smad3-dependent G1 cell-cycle arrest. Mol Ther 2023; 31:344-361. [PMID: 36514292 PMCID: PMC9743779 DOI: 10.1016/j.ymthe.2022.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence shows that SARS-CoV-2 can infect kidneys and cause acute kidney injury (AKI) in critically ill COVID-19 patients. However, mechanisms through which COVID-19 induces AKI are largely unknown, and treatment remains ineffective. Here, we report that kidney-specific overexpressing SARS-CoV-2 N gene can cause AKI, including tubular necrosis and elevated levels of serum creatinine and BUN in 8-week-old diabetic db/db mice, which become worse in those with older age (16 weeks) and underlying diabetic kidney disease (DKD). Treatment with quercetin, a purified product from traditional Chinese medicine (TCM) that shows effective treatment of COVID-19 patients, can significantly inhibit SARS-CoV-2 N protein-induced AKI in diabetic mice with or without underlying DKD. Mechanistically, quercetin can block the binding of SARS-CoV-2 N protein to Smad3, thereby inhibiting Smad3 signaling and Smad3-mediated cell death via the p16-dependent G1 cell-cycle arrest mechanism in vivo and in vitro. In conclusion, SARS-CoV-2 N protein is pathogenic and can cause severe AKI in diabetic mice, particularly in those with older age and pre-existing DKD, via the Smad3-dependent G1 cell-cycle arrest mechanism. Importantly, we identify that quercetin may be an effective TCM compound capable of inhibiting COVID-19 AKI by blocking SARS-CoV-2 N-Smad3-mediated cell death pathway.
Collapse
|
25
|
Huang HC, Wang SH, Fang GC, Chou WC, Liao CC, Sun CP, Jan JT, Ma HH, Ko HY, Ko YA, Chiang MT, Liang JJ, Kuo CT, Lee TA, Morales-Scheihing D, Shen CY, Chen SY, McCullough LD, Cui L, Wernig G, Tao MH, Lin YL, Chang YM, Wang SP, Lai YJ, Li CW. Upregulation of PD-L1 by SARS-CoV-2 promotes immune evasion. J Med Virol 2023; 95:e28478. [PMID: 36609964 PMCID: PMC10107526 DOI: 10.1002/jmv.28478] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/15/2022] [Accepted: 01/03/2023] [Indexed: 01/08/2023]
Abstract
Patients with severe COVID-19 often suffer from lymphopenia, which is linked to T-cell sequestration, cytokine storm, and mortality. However, it remains largely unknown how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces lymphopenia. Here, we studied the transcriptomic profile and epigenomic alterations involved in cytokine production by SARS-CoV-2-infected cells. We adopted a reverse time-order gene coexpression network approach to analyze time-series RNA-sequencing data, revealing epigenetic modifications at the late stage of viral egress. Furthermore, we identified SARS-CoV-2-activated nuclear factor-κB (NF-κB) and interferon regulatory factor 1 (IRF1) pathways contributing to viral infection and COVID-19 severity through epigenetic analysis of H3K4me3 chromatin immunoprecipitation sequencing. Cross-referencing our transcriptomic and epigenomic data sets revealed that coupling NF-κB and IRF1 pathways mediate programmed death ligand-1 (PD-L1) immunosuppressive programs. Interestingly, we observed higher PD-L1 expression in Omicron-infected cells than SARS-CoV-2 infected cells. Blocking PD-L1 at an early stage of virally-infected AAV-hACE2 mice significantly recovered lymphocyte counts and lowered inflammatory cytokine levels. Our findings indicate that targeting the SARS-CoV-2-mediated NF-κB and IRF1-PD-L1 axis may represent an alternative strategy to reduce COVID-19 severity.
Collapse
Affiliation(s)
- Hsiang-Chi Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shih-Han Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Guo-Chen Fang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Cheng Chou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Che Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Cheng-Pu Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiu-Hua Ma
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hui-Ying Ko
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-An Ko
- Biomedical Translational Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Tsai Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Tse Kuo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Te-An Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Diego Morales-Scheihing
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shih-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Lu Cui
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University Medical Center, Stanford, California, USA
| | - Gerlinde Wernig
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University Medical Center, Stanford, California, USA
| | - Mi-Hua Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Biomedical Translational Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Biomedical Translational Research Center, Academia Sinica, Taipei, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shu-Ping Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yun-Ju Lai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Solomont School of Nursing, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Chia-Wei Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
26
|
Arguinchona LM, Zagona-Prizio C, Joyce ME, Chan ED, Maloney JP. Microvascular significance of TGF-β axis activation in COVID-19. Front Cardiovasc Med 2023; 9:1054690. [PMID: 36684608 PMCID: PMC9852847 DOI: 10.3389/fcvm.2022.1054690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
As 2023 approaches, the COVID-19 pandemic has killed millions. While vaccines have been a crucial intervention, only a few effective medications exist for prevention and treatment of COVID-19 in breakthrough cases or in unvaccinated or immunocompromised patients. SARS-CoV-2 displays early and unusual features of micro-thrombosis and immune dysregulation that target endothelial beds of the lungs, skin, and other organs. Notably, anticoagulation improves outcomes in some COVID-19 patients. The protein transforming growth factor-beta (TGF-β1) has constitutive roles in maintaining a healthy microvasculature through its roles in regulating inflammation, clotting, and wound healing. However, after infection (including viral infection) TGF-β1 activation may augment coagulation, cause immune dysregulation, and direct a path toward tissue fibrosis. Dysregulation of TGF-β signaling in immune cells and its localization in areas of microvascular injury are now well-described in COVID-19, and such events may contribute to the acute respiratory distress syndrome and skin micro-thrombosis outcomes frequently seen in severe COVID-19. The high concentration of TGF-β in platelets and in other cells within microvascular thrombi, its ability to activate the clotting cascade and dysregulate immune pathways, and its pro-fibrotic properties all contribute to a unique milieu in the COVID-19 microvasculature. This unique environment allows for propagation of microvascular clotting and immune dysregulation. In this review we summarize the physiological functions of TGF-β and detail the evidence for its effects on the microvasculature in COVID-19. In addition, we explore the potential role of existing TGF-β inhibitors for the prevention and treatment of COVID-19 associated microvascular thrombosis and immune dysregulation.
Collapse
Affiliation(s)
- Lauren M. Arguinchona
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Caterina Zagona-Prizio
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Megan E. Joyce
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Edward D. Chan
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States,National Jewish Health, Denver, CO, United States
| | - James P. Maloney
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States,*Correspondence: James P. Maloney,
| |
Collapse
|
27
|
Boshra MS, Abou Warda AE, Sayed MA, Elkomy MH, Alotaibi NH, Mohsen M, Sarhan RM. Effect of Pirfenidone on Risk of Pulmonary Fibrosis in COVID-19 Patients Experiencing Cytokine Storm. Healthcare (Basel) 2022; 10:2387. [PMID: 36553912 PMCID: PMC9777849 DOI: 10.3390/healthcare10122387] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Severe stages of COVID-19 infection have been associated with the excessive discharge of pro-inflammatory mediators such as cytokines, resulting in lung deterioration, which progresses rapidly to lung fibrosis leading to acute respiratory distress syndrome. In this investigation, the efficacy and safety of the novel antifibrotic and anti-inflammatory agent, Pirfenidone, were assessed in COVID-19 patients with pulmonary fibrosis secondary to cytokine storm. In this randomized controlled study, we assigned 100 adult COVID-19 patients cytokine storm and admitted to the intensive care isolation unit into either pirfenidone added to the standard therapy (n = 47), or the standard protocol only (n = 53). High-resolution computed tomography of the chest was performed in all patients to evaluate fibrotic lesions and their progression. The results showed that the percentage of patients who developed pulmonary fibrosis during cytokine storm onset in the pirfenidone group relative to the standard group was 29.8% and 35.8%, respectively, with no significant difference between the two groups; while there was a significant increase in the proportion of patients discharged from the isolation unit with pulmonary fibrosis without progression in fibrotic lesions in the pirfenidone group compared to the standard group (21.3% and 5.7%, respectively). Furthermore, there was a significant difference concerning liver enzyme elevation and GIT disturbance incidences in the studied groups (p = 0.006 and 0.01, respectively). Our findings show that Pirfenidone inhibits fibrosis advancement in COVID-19 patients with pulmonary fibrosis and is associated with hepatotoxicity and GI distress. It may be beneficial in patients with mild to moderate COVID-19-induced pulmonary fibrosis; however, additional research is necessary.
Collapse
Affiliation(s)
- Marian S. Boshra
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef P.O. Box 62514, Egypt
| | - Ahmed E. Abou Warda
- Clinical Pharmacy Department, Faculty of Pharmacy, October 6 University, Giza P.O. Box 12585, Egypt
| | | | - Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Nasser H. Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Marwa Mohsen
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef P.O. Box 62514, Egypt
| | - Rania M. Sarhan
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef P.O. Box 62514, Egypt
| |
Collapse
|
28
|
Antar SA, Saleh MA, Al-Karmalawy AA. Investigating the possible mechanisms of pirfenidone to be targeted as a promising anti-inflammatory, anti-fibrotic, anti-oxidant, anti-apoptotic, anti-tumor, and/or anti-SARS-CoV-2. Life Sci 2022; 309:121048. [PMID: 36209833 PMCID: PMC9536875 DOI: 10.1016/j.lfs.2022.121048] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/23/2022] [Accepted: 10/02/2022] [Indexed: 01/10/2023]
Abstract
Pirfenidone (PFD) is a non-peptide synthetic chemical that inhibits the production of transforming growth factor-beta 1 (TGF-β1), tumor necrosis factor-alpha (TNF-α), platelet-derived growth factor (PDGF), Interleukin 1 beta (IL-1β), and collagen 1 (COL1A1), all of which have been linked to the prevention or removal of excessive scar tissue deposition in many organs. PFD has been demonstrated to decrease apoptosis, downregulate angiotensin-converting enzyme (ACE) receptor expression, reduce inflammation through many routes, and alleviate oxidative stress in pneumocytes and other cells while protecting them from COVID-19 invasion and cytokine storm. Based on the mechanism of action of PFD and the known pathophysiology of COVID-19, it was recommended to treat COVID-19 patients. The use of PFD as a treatment for a range of disorders is currently being studied, with an emphasis on outcomes related to reduced inflammation and fibrogenesis. As a result, rather than exploring the molecule's chemical characteristics, this review focuses on innovative PFD efficacy data. Briefly, herein we tried to investigate, discuss, and illustrate the possible mechanisms of actions for PFD to be targeted as a promising anti-inflammatory, anti-fibrotic, anti-oxidant, anti-apoptotic, anti-tumor, and/or anti-SARS-CoV-2 candidate.
Collapse
Affiliation(s)
- Samar A Antar
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt.
| | - Mohamed A Saleh
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, the United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt.
| |
Collapse
|
29
|
Rarani FZ, Rashidi B, Jafari Najaf Abadi MH, Hamblin MR, Reza Hashemian SM, Mirzaei H. Cytokines and microRNAs in SARS-CoV-2: What do we know? MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:219-242. [PMID: 35782361 PMCID: PMC9233348 DOI: 10.1016/j.omtn.2022.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic constitutes a global health emergency. Currently, there are no completely effective therapeutic medications for the management of this outbreak. The cytokine storm is a hyperinflammatory medical condition due to excessive and uncontrolled release of pro-inflammatory cytokines in patients suffering from severe COVID-19, leading to the development of acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome (MODS) and even mortality. Understanding the pathophysiology of COVID-19 can be helpful for the treatment of patients. Evidence suggests that the levels of tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1 and IL-6 are dramatically different between mild and severe patients, so they may be important contributors to the cytokine storm. Several serum markers can be predictors for the cytokine storm. This review discusses the cytokines involved in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, focusing on interferons (IFNs) and ILs, and whether they can be used in COVID-19 treatment. Moreover, we highlight several microRNAs that are involved in these cytokines and their role in the cytokine storm caused by COVID-19.
Collapse
Affiliation(s)
- Fahimeh Zamani Rarani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR, Iran
| |
Collapse
|
30
|
Jiang Y, Zhao T, Zhou X, Xiang Y, Gutierrez‐Castrellon P, Ma X. Inflammatory pathways in COVID-19: Mechanism and therapeutic interventions. MedComm (Beijing) 2022; 3:e154. [PMID: 35923762 PMCID: PMC9340488 DOI: 10.1002/mco2.154] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/05/2023] Open
Abstract
The 2019 coronavirus disease (COVID-19) pandemic has become a global crisis. In the immunopathogenesis of COVID-19, SARS-CoV-2 infection induces an excessive inflammatory response in patients, causing an inflammatory cytokine storm in severe cases. Cytokine storm leads to acute respiratory distress syndrome, pulmonary and other multiorgan failure, which is an important cause of COVID-19 progression and even death. Among them, activation of inflammatory pathways is a major factor in generating cytokine storms and causing dysregulated immune responses, which is closely related to the severity of viral infection. Therefore, elucidation of the inflammatory signaling pathway of SARS-CoV-2 is important in providing otential therapeutic targets and treatment strategies against COVID-19. Here, we discuss the major inflammatory pathways in the pathogenesis of COVID-19, including induction, function, and downstream signaling, as well as existing and potential interventions targeting these cytokines or related signaling pathways. We believe that a comprehensive understanding of the regulatory pathways of COVID-19 immune dysregulation and inflammation will help develop better clinical therapy strategies to effectively control inflammatory diseases, such as COVID-19.
Collapse
Affiliation(s)
- Yujie Jiang
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduPR China
| | - Tingmei Zhao
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduPR China
| | - Xueyan Zhou
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduPR China
| | - Yu Xiang
- Department of BiotherapyState Key Laboratory of Biotherapy Cancer CenterWest China HospitalSichuan UniversityChengduPR China
| | - Pedro Gutierrez‐Castrellon
- Center for Translational Research on Health Science Hospital General Dr. Manuel Gea GonzalezMinistry of HealthMexico CityMexico
| | - Xuelei Ma
- Department of BiotherapyState Key Laboratory of Biotherapy Cancer CenterWest China HospitalSichuan UniversityChengduPR China
| |
Collapse
|
31
|
Comprehensive review of two groups of flavonoids in Carthamus tinctorius L. Biomed Pharmacother 2022; 153:113462. [DOI: 10.1016/j.biopha.2022.113462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
|
32
|
Chen L, Guan WJ, Qiu ZE, Xu JB, Bai X, Hou XC, Sun J, Qu S, Huang ZX, Lei TL, Huang ZY, Zhao J, Zhu YX, Ye KN, Lun ZR, Zhou WL, Zhong NS, Zhang YL. SARS-CoV-2 nucleocapsid protein triggers hyperinflammation via protein-protein interaction-mediated intracellular Cl - accumulation in respiratory epithelium. Signal Transduct Target Ther 2022; 7:255. [PMID: 35896532 PMCID: PMC9328007 DOI: 10.1038/s41392-022-01048-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2, the culprit pathogen of COVID-19, elicits prominent immune responses and cytokine storms. Intracellular Cl− is a crucial regulator of host defense, whereas the role of Cl− signaling pathway in modulating pulmonary inflammation associated with SARS-CoV-2 infection remains unclear. By using human respiratory epithelial cell lines, primary cultured human airway epithelial cells, and murine models of viral structural protein stimulation and SARS-CoV-2 direct challenge, we demonstrated that SARS-CoV-2 nucleocapsid (N) protein could interact with Smad3, which downregulated cystic fibrosis transmembrane conductance regulator (CFTR) expression via microRNA-145. The intracellular Cl− concentration ([Cl−]i) was raised, resulting in phosphorylation of serum glucocorticoid regulated kinase 1 (SGK1) and robust inflammatory responses. Inhibition or knockout of SGK1 abrogated the N protein-elicited airway inflammation. Moreover, N protein promoted a sustained elevation of [Cl−]i by depleting intracellular cAMP via upregulation of phosphodiesterase 4 (PDE4). Rolipram, a selective PDE4 inhibitor, countered airway inflammation by reducing [Cl−]i. Our findings suggested that Cl− acted as the crucial pathological second messenger mediating the inflammatory responses after SARS-CoV-2 infection. Targeting the Cl− signaling pathway might be a novel therapeutic strategy for COVID-19.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.,Department of Thoracic Surgery, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.,Guangzhou Laboratory, Guangzhou, China
| | - Zhuo-Er Qiu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian-Bang Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xu Bai
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Chun Hou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Su Qu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ze-Xin Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tian-Lun Lei
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zi-Yang Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ke-Nan Ye
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhao-Rong Lun
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Nan-Shan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China. .,Guangzhou Laboratory, Guangzhou, China.
| | - Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
33
|
McCarthy MJ. Circadian rhythm disruption in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Implications for the post-acute sequelae of COVID-19. Brain Behav Immun Health 2022; 20:100412. [PMID: 35465246 PMCID: PMC9019698 DOI: 10.1016/j.bbih.2022.100412] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a common and disabling disorder primarily characterized by persistent fatigue and exercise intolerance, with associated sleep disturbances, autonomic dysfunction, and cognitive problems. The causes of ME/CFS are not well understood but may coincide with immune and inflammatory responses following viral infections. During the current SARS-CoV2 coronavirus pandemic, ME/CFS has been increasingly reported to overlap with persistent “long COVID” symptoms, also called the post-acute sequelae of COVID-19 (PASC). Given the prominence of activity and sleep problems in ME/CFS, circadian rhythm disruption has been examined as a contributing factor in ME/CFS. While these studies of circadian rhythms have been pursued for decades, evidence linking circadian rhythms to ME/CFS remains inconclusive. A major limitation of older chronobiology studies of ME/CFS was the unavailability of modern molecular methods to study circadian rhythms and incomplete understanding of circadian rhythms outside the brain in peripheral organ systems. Major methodological and conceptual advancements in chronobiology have since been made. Over the same time, biomarker research in ME/CFS has progressed. Together, these new developments may justify renewed interest in circadian rhythm research in ME/CFS. Presently, we review ME/CFS from the perspective of circadian rhythms, covering both older and newer studies that make use of modern molecular methods. We focus on transforming growth factor beta (TGFB), a cytokine that has been previously associated with ME/CFS and has an important role in circadian rhythms, especially in peripheral cells. We propose that disrupted TGFB signaling in ME/CFS may play a role in disrupting physiological rhythms in sleep, activity, and cognition, leading to the insomnia, energy disturbances, cognition problems, depression, and autonomic dysfunction associated with ME/CFS. Since SARS-like coronavirus infections cause persistent changes in TGFB and previous coronavirus outbreaks have caused ME/CFS-like syndromes, chronobiological considerations may have immediate implications for understanding ME/CFS in the context of the COVID-19 pandemic and possibly suggest new avenues for therapeutic interventions. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is characterized by disrupted sleep and activity implicating circadian clocks. The incidence of ME/CFS is expected to increase as a result of the post-acute sequelae of COVID-19. Biomarker studies in ME/CFS patients implicate Transforming Growth Factor B (TGFB). TGFB has roles in synchronizing circadian rhythms in peripheral cells. Identification of biomarkers and new methodologies may facilitate progress in the chronobiological basis of ME/CFS.
Collapse
Affiliation(s)
- Michael J McCarthy
- UC San Diego Department of Psychiatry and Center for Circadian Biology, 9500 Gilman Dr, La Jolla CA 92093, USA.,VA San Diego Medical Center, San Diego CA, 3350 La Jolla Village Dr MC 116A, San Diego CA, 92161, USA
| |
Collapse
|
34
|
Curran CS, Kopp JB. Aryl Hydrocarbon Receptor Mechanisms Affecting Chronic Kidney Disease. Front Pharmacol 2022; 13:782199. [PMID: 35237156 PMCID: PMC8882872 DOI: 10.3389/fphar.2022.782199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/14/2022] [Indexed: 12/25/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a basic helix-loop-helix transcription factor that binds diverse endogenous and xenobiotic ligands, which regulate AHR stability, transcriptional activity, and cell signaling. AHR activity is strongly implicated throughout the course of chronic kidney disease (CKD). Many diverse organic molecules bind and activate AHR and these ligands are reported to either promote glomerular and tubular damage or protect against kidney injury. AHR crosstalk with estrogen, peroxisome proliferator-activated receptor-γ, and NF-κB pathways may contribute to the diversity of AHR responses during the various forms and stages of CKD. The roles of AHR in kidney fibrosis, metabolism and the renin angiotensin system are described to offer insight into CKD pathogenesis and therapies.
Collapse
Affiliation(s)
- Colleen S. Curran
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD, United States
| | - Jeffrey B. Kopp
- Kidney Disease Section, NIDDK, NIH, Bethesda, MD, United States
| |
Collapse
|
35
|
Mohamad EA, Mohamed ZN, Hussein MA, Elneklawi MS. GANE can Improve Lung Fibrosis by Reducing Inflammation via Promoting p38MAPK/TGF-β1/NF-κB Signaling Pathway Downregulation. ACS OMEGA 2022; 7:3109-3120. [PMID: 35097306 PMCID: PMC8792938 DOI: 10.1021/acsomega.1c06591] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/24/2021] [Indexed: 05/30/2023]
Abstract
There is a trend to use nanoparticles as distinct treatments for cancer treatment because they have overcome many of the limitations of traditional drug delivery systems. Gallic acid (GA) is an effective polyphenol in the treatment of tissue injuries. In this study, GA was loaded onto niosomes to produce gallic acid nanoemulsion (GANE) using a green synthesis technique. GANE's efficiency, morphology, UV absorption, release, and Fourier-transform infrared spectroscopy (FTIR) analysis were evaluated. An in vitro study was conducted on the A549 lung carcinoma cell line to determine the GANE cytotoxicity. Also, our study was extended to evaluate the protective effect of GANE against lipopolysaccharide (LPS)-induced pulmonary fibrosis in rats. GANE showed higher encapsulation efficiency and strong absorption at 280 nm. Transmission electron microscopy presented a spherical shape of the prepared nanoparticles, and FTIR demonstrated different spectra for the free gallic acid sample compared to GANE. GANE showed cytotoxicity for the A549 carcinoma lung cell line with a low IC50 value. It was found that oral administration of GANE at 32.8 and 82 mg/kg.b.w. and dexamethasone (0.5 mg/kg) provided significant protection against LPS-induced pulmonary fibrosis. GANE enhanced production of superoxide dismutase, GPx, and GSH. It simultaneously reduced the MDA level. The GANE and dexamethasone, induced the production of IL-4, but suppressed TNF-α and IL-6. On the other hand, the lung p38MAPK, TGF-β1, and NF-κB gene expression was downregulated in rats administrated with GANE when compared with the LPS-treated rats. Histological studies confirmed the effective effect of GANE as it had a lung-protective effect against LPS-induced lung fibrosis. It was noticed that GANE can inhibit oxidative stress, lipid peroxidation, and cytokines and downregulate p38MAPK, TGF-β1, and NF-κB gene expression to suppress the proliferation and migration of lung fibrotic cells.
Collapse
Affiliation(s)
- Ebtesam A. Mohamad
- Biophysics
Department, Faculty of Science, Cairo University, Cairo University Street, Giza 12613, Egypt
| | - Zahraa N. Mohamed
- Medical
Laboratory Department, Faculty of Applied Medical Sciences, October 6 University, 6th of October City 28125, Giza, Egypt
| | - Mohammed A. Hussein
- Biochemistry
Department, Faculty of Applied Medical Sciences, October 6 University, 6th of
October City 28125, Giza, Egypt
| | - Mona S. Elneklawi
- Biomedical
Equipment Department, Faculty of Applied Medical Sciences, October 6 University, 6th of October City 28125, Giza, Egypt
| |
Collapse
|
36
|
Acat M, Yildiz Gulhan P, Oner S, Turan MK. Comparison of pirfenidone and corticosteroid treatments at the COVID-19 pneumonia with the guide of artificial intelligence supported thoracic computed tomography. Int J Clin Pract 2021; 75:e14961. [PMID: 34624155 PMCID: PMC8646554 DOI: 10.1111/ijcp.14961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
AIM We aimed to investigate the effect of short-term pirfenidone treatment on prolonged COVID-19 pneumonia. METHOD Hospital files of patients hospitalised with a diagnosis of critical COVID-19 pneumonia from November 2020 to March 2021 were retrospectively reviewed. Chest computed tomography images taken both before treatment and 2 months after treatment, demographic characteristics and laboratory parameters of patients receiving pirfenidone + methylprednisolone (n = 13) and only methylprednisolones (n = 9) were recorded. Pulmonary function tests were performed after the second month of the treatment. CT involvement rates were determined by machine learning. RESULTS A total of 22 patients, 13 of whom (59.1%) were using methylprednisolone + pirfenidone and 9 of whom (40.9%) were using only methylprednisolone were included. When the blood gas parameters and pulmonary function tests of the patients were compared at the end of the second month, it was found that the FEV1, FEV1%, FVC and FVC% values were statistically significantly higher in the methylprednisolone + pirfenidone group compared with the methylprednisolone group (P = .025, P = .012, P = .026 and P = .017, respectively). When the rates of change in CT scans at diagnosis and second month of treatment were examined, it was found that the involvement rates in the methylprednisolone + pirfenidone group were statistically significantly decreased (P < .001). CONCLUSION Antifibrotic agents can reduce fibrosis that may develop in the future. These can also help dose reduction and/or non-use strategy for methylprednisolone therapy, which has many side effects. Further large series and randomised controlled studies are needed on this subject.
Collapse
Affiliation(s)
- Murat Acat
- Department of Pulmonary DiseasesKarabuk UniversityKarabuk Training and Research HospitalKarabukTurkey
| | | | - Serkan Oner
- Department of RadiologyBakırcay UniversityCigli Regional Training and Research HospitalIzmirTurkey
| | - Muhammed Kamil Turan
- Department of Medical Biology and GeneticsKarabuk University, Faculty of MedicineKarabukTurkey
| |
Collapse
|