1
|
Ye L, Li H, Zhang W, Zhou Y, Lan X, Wang Y. Blue light-emitting diode promotes mineralization of stem cells from the apical papilla via cryptochrome 1/Wnt/β-catenin signaling. J Mol Histol 2025; 56:125. [PMID: 40167571 DOI: 10.1007/s10735-025-10400-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/16/2025] [Indexed: 04/02/2025]
Abstract
This study aimed to determine whether low-intensity blue LED light (4 J/cm2) promotes mineralization of stem cells from the apical papilla (SCAPs) by modulating CRY1 expression and to elucidate the underlying molecular mechanisms. SCAPs identity was validated using flow cytometry. In a controlled experimental design, SCAPs were exposed to blue LED light, followed by quantitative assessment of CRY1 and osteogenic markers (Runx2, OSX, DSPP, DMP-1) via qRT-PCR, Western blotting, and osteogenic staining. To investigate the role of CRY1 in SCAPs osteogenic differentiation, CRY1 was overexpressed using lentiviral transfection. Additionally, the Wnt/β-catenin pathway was analyzed using specific inhibitors (XAV-939) to elucidate the underlying molecular mechanisms. Blue LED irradiation reduced CRY1 mRNA expression to 80% (day 7) and 45% (day 14) of control levels. CRY1 overexpression significantly increased CRY1 mRNA and protein levels (P < 0.001) but decreased ALP activity and ARS staining (P < 0.001). Blue LED treatment restored mineralization parameters to 80% of control levels. Key osteogenic genes (DMP-1, DSPP, Runx2, OSX) showed lower mRNA and protein levels in the CRY1 overexpression group compared to controls. Blue LED exposure increased these levels to 60-74% (mRNA) and 45-67% (protein) of control values. In the Wnt/β-catenin pathway, CRY1 overexpression elevated GSK-3β and reduced p-GSK-3β, β-catenin, and nuclear β-catenin levels. Blue LED treatment restored these levels to 33-54% of control values, indicating pathway activation. Inhibition of the Wnt/β-catenin pathway (using XAV-939) abolished differences in osteogenic gene expression and mineralization between CRY1 overexpression and blue LED-treated groups, confirming its critical role. Blue LED light at 4 J/cm2 enhances SCAPs mineralization by modulating CRY1 expression and activating the Wnt/β-catenin pathway. These findings provide mechanistic insights into photobiomodulation (PBM) in bone regeneration and highlight its potential for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Lin Ye
- Department of Preventive Dentistry, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Hao Li
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Pangang Group General Hospital, Panzhihua, 617023, China
| | - Wantong Zhang
- Department of Preventive Dentistry, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Yan Zhou
- Department of Preventive Dentistry, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Yao Wang
- Department of Preventive Dentistry, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China.
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
2
|
Maghfour J, Ozog DM, Mineroff J, Jagdeo J, Kohli I, Lim HW. Photobiomodulation CME part I: Overview and mechanism of action. J Am Acad Dermatol 2024; 91:793-802. [PMID: 38309304 DOI: 10.1016/j.jaad.2023.10.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 02/05/2024]
Abstract
Photobiomodulation (PBM), previously known as low-level laser light therapy, represents a noninvasive form of phototherapy that utilizes wavelengths in the red light (RL, 620-700 nm) portion of the visible light (VL, 400-700 nm) spectrum and the near-infrared (NIR, 700-1440 nm) spectrum. PBM is a promising and increasingly used therapy for the treatment of various dermatologic and nondermatologic conditions. Photons from RL and NIR are absorbed by endogenous photoreceptors including mitochondrial cytochrome C oxidase (COX). Activation of COX leads to the following changes: modulation of mitochondrial adenosine triphosphate (ATP), generation of reactive oxygen species (ROS), and alterations in intracellular calcium levels. The associated modulation of ATP, ROS and calcium levels promotes the activation of various signaling pathways (eg, insulin-like growth factors, phosphoinositide 3-kinase pathways), which contribute to downstream effects on cellular proliferation, migration, and differentiation. Effective PBM therapy is dependent on treatment parameters (eg, fluence, treatment duration and output power). PBM is generally well-tolerated and safe with erythema being the most common and self-limiting adverse cutaneous effect.
Collapse
Affiliation(s)
- Jalal Maghfour
- Department of Dermatology, Henry Ford Health, Detroit, Michigan
| | - David M Ozog
- Department of Dermatology, Henry Ford Health, Detroit, Michigan; The Henry W. Lim, MD, Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, Michigan; College of Human Medicine, Michigan State University, East Lansing, Michigan.
| | - Jessica Mineroff
- Department of Dermatology, State University of New York, Downstate Health Sciences University, Brooklyn, New York
| | - Jared Jagdeo
- Department of Dermatology, State University of New York, Downstate Health Sciences University, Brooklyn, New York
| | - Indermeet Kohli
- The Henry W. Lim, MD, Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, Michigan; College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Henry W Lim
- Department of Dermatology, Henry Ford Health, Detroit, Michigan; The Henry W. Lim, MD, Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, Michigan; College of Human Medicine, Michigan State University, East Lansing, Michigan
| |
Collapse
|
3
|
Shamel M, Raafat S, El Karim I, Saber S. Photobiomodulation and low-intensity pulsed ultrasound synergistically enhance dental mesenchymal stem cells viability, migration and differentiation: an invitro study. Odontology 2024; 112:1142-1156. [PMID: 38517569 DOI: 10.1007/s10266-024-00920-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/18/2024] [Indexed: 03/24/2024]
Abstract
Novel methods and technologies that improve mesenchymal stem cells (MSCs) proliferation and differentiation properties are required to increase their clinical efficacy. Photobiomodulation (PBM) and low-intensity pulsed ultrasound (LIPUS) are two strategies that can be used to enhance the regenerative properties of dental MSCs. This study evaluated the cytocompatibility and osteo/odontogenic differentiation of dental pulp, periodontal ligament, and gingival MSCs after stimulation by either PBM or LIPUS and their combined effect. MTT assay, cell migration assay, osteo/odontogenic differentiation by AR staining and ALP activity, and expression of osteo/odontogenic markers (OPG, OC, RUNX2, DSPP, DMP1) by RT-qPCR were evaluated. Statistical analysis was performed using ANOVA, followed by Tukey's post hoc test, with a p-value of less than 0.05 considered significant. The results showed that combined stimulation by PBM and LIPUS resulted in significantly the highest viability of MSCs, the fastest migration, the most dense AR staining, the most increased ALP activity, and the most elevated levels of osteogenic and odontogenic markers. The synergetic stimulation of PBM and LIPUS can be utilized in cell-based regenerative approaches to promote the properties of dental MSCs.
Collapse
Affiliation(s)
- Mohamed Shamel
- Department of Oral Biology, Faculty of Dentistry, The British University in Egypt, El Sherouk City, Egypt
| | - Shereen Raafat
- Department of Pharmacology, Faculty of Dentistry, The British University in Egypt, El Sherouk City, Egypt
- Dental Science Research Group, Health Research Centre of Excellence, The British University in Egypt (BUE), El Sherouk City, Egypt
| | - Ikhlas El Karim
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK
| | - Shehabeldin Saber
- Dental Science Research Group, Health Research Centre of Excellence, The British University in Egypt (BUE), El Sherouk City, Egypt.
- Department of Endodontics, Faculty of Dentistry, The British University in Egypt, El Sherouk City, Egypt.
| |
Collapse
|
4
|
Palmisano B, Vecchio AD, Passaretti A, Stefano A, Miracolo G, Farinacci G, Corsi A, Riminucci M, Romeo U, Cicconetti A. Potential of combined red and near-infrared photobiomodulation to mitigate pro-osteoclastic and inflammatory gene expression in human mandibular osteogenic cells. Lasers Med Sci 2024; 39:247. [PMID: 39349883 PMCID: PMC11442520 DOI: 10.1007/s10103-024-04180-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
Appropriate regeneration of jawbone after dental or surgical procedures relies on the recruitment of osteoprogenitor cells able to differentiate into matrix-producing osteoblasts. In this context, photobiomodulation (PBM) has emerged as promising therapy to improve tissue regeneration and to facilitate wound healing processes. The aim of this study was to determine the effect of PBM on human osteoprogenitor cells isolated from mandibular trabecular bone.Bone marrow stromal cell cultures were established from 4 donors and induced toward osteogenic differentiation for 14 days in a standard osteogenic assay. Cells were irradiated with a combined red/near-infrared (NIR) laser following different schedules and expression of osteogenic, matrix-related, osteoclastogenic and inflammatory genes was analyzed by quantitative PCR.Gene expression analysis revealed no overall effects of PBM on osteogenic differentiation. However, a statistically significant reduction was observed in the transcripts of COL1A1 and MMP13, two important genes involved in the bone matrix homeostasis. Most important, PBM significantly downregulated the expression of RANKL, IL6 and IL1B, three genes that are involved in both osteoclastogenesis and inflammation.In conclusion, PBM with a red/NIR laser did not modulate the osteogenic phenotype of mandibular osteoprogenitors but markedly reduced their expression of matrix-related genes and their pro-osteoclastogenic and pro-inflammatory profile.
Collapse
Affiliation(s)
- Biagio Palmisano
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Alessandro Del Vecchio
- Department of Oral Maxillo-Facial Sciences, Sapienza University of Rome, Via Caserta 6, 00161, Rome, Italy.
| | - Alfredo Passaretti
- Department of Oral Maxillo-Facial Sciences, Sapienza University of Rome, Via Caserta 6, 00161, Rome, Italy
| | - Alessia Stefano
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Giovanna Miracolo
- Department of Oral Maxillo-Facial Sciences, Sapienza University of Rome, Via Caserta 6, 00161, Rome, Italy
| | - Giorgia Farinacci
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Umberto Romeo
- Department of Oral Maxillo-Facial Sciences, Sapienza University of Rome, Via Caserta 6, 00161, Rome, Italy
| | - Andrea Cicconetti
- Department of Oral Maxillo-Facial Sciences, Sapienza University of Rome, Via Caserta 6, 00161, Rome, Italy
| |
Collapse
|
5
|
Mei G, Wang J, Wang J, Ye L, Yi M, Chen G, Zhang Y, Tang Q, Chen L. The specificities, influencing factors, and medical implications of bone circadian rhythms. FASEB J 2024; 38:e23758. [PMID: 38923594 DOI: 10.1096/fj.202302582rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/14/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Physiological processes within the human body are regulated in approximately 24-h cycles known as circadian rhythms, serving to adapt to environmental changes. Bone rhythms play pivotal roles in bone development, metabolism, mineralization, and remodeling processes. Bone rhythms exhibit cell specificity, and different cells in bone display various expressions of clock genes. Multiple environmental factors, including light, feeding, exercise, and temperature, affect bone diurnal rhythms through the sympathetic nervous system and various hormones. Disruptions in bone diurnal rhythms contribute to the onset of skeletal disorders such as osteoporosis, osteoarthritis and skeletal hypoplasia. Conversely, these bone diseases can be effectively treated when aimed at the circadian clock in bone cells, including the rhythmic expressions of clock genes and drug targets. In this review, we describe the unique circadian rhythms in physiological activities of various bone cells. Then we summarize the factors synchronizing the diurnal rhythms of bone with the underlying mechanisms. Based on the review, we aim to build an overall understanding of the diurnal rhythms in bone and summarize the new preventive and therapeutic strategies for bone disorders.
Collapse
Affiliation(s)
- Gang Mei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jinyu Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiajia Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lanxiang Ye
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ming Yi
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yifan Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
6
|
Nakatani A, Kunimatsu R, Sakata S, Tsuka Y, Miyauchi M, Takata T, Tanimoto K. High-frequency low-intensity semiconductor laser irradiation enhances osteogenic differentiation of human cementoblast lineage cells. Lasers Med Sci 2024; 39:174. [PMID: 38969931 PMCID: PMC11226468 DOI: 10.1007/s10103-024-04127-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
PURPOSE Laser irradiation activates a range of cellular processes in the periodontal components and promotes tissue repair. However, its effect on osteogenic differentiation of human cementoblast lineage cells remains unclear. This study aimed to examine the effects of high-frequency semiconductor laser irradiation on the osteogenic differentiation of human cementoblast lineage (HCEM) cells. METHODS HCEM cells were cultured to reach 80% confluence and irradiated with a gallium-aluminum-arsenide (Ga-Al-As) semiconductor laser with a pulse width of 200 ns and wavelength of 910 at a dose of 0-2.0 J/cm2. The outcomes were assessed by analyzing the mRNA levels of alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), and type I collagen (COLL1) using real-time polymerase chain reaction (PCR) analysis 24 h after laser irradiation. Cell mineralization was evaluated using ALP activity, calcium deposition, and Alizarin Red staining. RESULTS The laser-irradiated HCEM cells showed significantly enhanced gene expression levels of ALP, RUNX2, and COLL1 as well as ALP activity and calcium concentration in the culture medium compared with the non-irradiated cells. In addition, enhanced calcification deposits were confirmed in the laser-irradiated group compared with the non-irradiated group at 21 and 28 days after the induction of osteogenic differentiation. CONCLUSION High-frequency semiconductor laser irradiation enhances the osteogenic differentiation potential of cultured HCEM cells, underscoring its potential utility for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Ayaka Nakatani
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryo Kunimatsu
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Shuzo Sakata
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuji Tsuka
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Shunan University, Shunan City, Shunan, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
7
|
Li J, Wang S, Ren Y, Li H, Zhou Y, Lan X, Wang Y. Differential expression of circRNAs during osteogenic/odontogenic differentiation of stem cells from apical papilla promoted by blue light-emitting diode. Mol Biol Rep 2024; 51:710. [PMID: 38824241 DOI: 10.1007/s11033-024-09621-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Circular RNA (circRNA) is a key player in regulating the multidirectional differentiation of stem cells. Previous research by our group found that the blue light-emitting diode (LED) had a promoting effect on the osteogenic/odontogenic differentiation of human stem cells from apical papilla (SCAPs). This research aimed to investigate the differential expression of circRNAs during the osteogenic/odontogenic differentiation of SCAPs regulated by blue LED. MATERIALS AND METHODS SCAPs were divided into the irradiation group (4 J/cm2) and the control group (0 J/cm2), and cultivated in an osteogenic/odontogenic environment. The differentially expressed circRNAs during osteogenic/odontogenic differentiation of SCAPs promoted by blue LED were detected by high-throughput sequencing, and preliminarily verified by qRT-PCR. Functional prediction of these circRNAs was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the circRNA-miRNA-mRNA networks were also constructed. RESULTS It showed 301 circRNAs were differentially expressed. GO and KEGG analyses suggested that these circRNAs were associated with some signaling pathways related to osteogenic/odontogenic differentiation. And the circRNA-miRNA-mRNA networks were also successfully constructed. CONCLUSION CircRNAs were involved in the osteogenic/odontogenic differentiation of SCAPs promoted by blue LED. In this biological process, circRNA-miRNA-mRNA networks served an important purpose, and circRNAs regulated this process through certain signaling pathways.
Collapse
Affiliation(s)
- Jiaxin Li
- School of Stomatology, Southwest Medical University, Luzhou, 646000, China
- The Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Shifen Wang
- School of Stomatology, Southwest Medical University, Luzhou, 646000, China
- The Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Yajiao Ren
- School of Stomatology, Southwest Medical University, Luzhou, 646000, China
- The Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Hao Li
- School of Stomatology, Southwest Medical University, Luzhou, 646000, China
- The Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Yan Zhou
- School of Stomatology, Southwest Medical University, Luzhou, 646000, China
- The Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, China
| | - Yao Wang
- School of Stomatology, Southwest Medical University, Luzhou, 646000, China.
- The Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, China.
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
8
|
Rahmati A, Abbasi R, Najafi R, Asnaashari M, Behroozi R, Rezaei-Soufi L, Karkehabadi H. Effect of Low-Level Diode Laser and Red Light-Emitting Diode on Survival and Osteogenic/Odontogenic Differentiation of Human Dental Pulp Stem Cells. Photobiomodul Photomed Laser Surg 2024; 42:306-313. [PMID: 38546858 DOI: 10.1089/photob.2023.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Background: This investigation set out to compare the impacts of low-level diode laser (LLDL) and red light-emitting diode (LED) on the survival of human dental pulp stem cells (hDPSCs) and osteogenic/odontogenic differentiation. Methods and materials: In this ex vivo experimental study, the experimental groups underwent the irradiation of LLDL (4 J/cm2 energy density) and red LED in the osteogenic medium. Survival of hDPSCs was assessed after 24 and 48 h (n = 9) using the methyl thiazolyl tetrazolium (MTT) assay. The assessment of osteogenic/odontogenic differentiation was conducted using alizarin red staining (ARS; three repetitions). The investigation of osteogenic and odontogenic gene expression was performed at two time points, specifically 24 and 48 h (n = 12). This analysis was performed utilizing real-time reverse-transcription polymerase chain reaction (RT-PCR). The groups were compared at each time point using SPSS version 24. To analyze the data, the Mann-Whitney U test, analysis of variance, Tukey's test, and t-test were utilized. Results: The MTT assay showed that LLDL significantly decreased the survival of hDPSCs after 48 h, compared with other groups (p < 0.05). The qualitative results of ARS revealed that LLDL and red LED increased the osteogenic differentiation of hDPSCs. LLDL and red LED both upregulated the expression of osteogenic/odontogenic genes, including bone sialoprotein (BSP), alkaline phosphatase (ALP), dentin matrix protein 1 (DMP1), and dentin sialophosphoprotein (DSPP), in hDPSCs. The LLDL group exhibited a higher level of gene upregulation (p < 0.0001). Conclusions: The cell survival of hDPSCs was reduced, despite an increase in osteogenic/odontogenic activity. Clinical relevance: Introduction of noninvasive methods in regenerative endodontic treatments.
Collapse
Affiliation(s)
- Afsaneh Rahmati
- Department of Endodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roshanak Abbasi
- Department of Endodontics, School of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Rezvan Najafi
- Department of Medical Molecular & Genetics, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Asnaashari
- Laser Application in Medical Sciences Research Center, Department of Endodontics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Loghman Rezaei-Soufi
- Department of Operative Dentistry, Dental Research Center, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamed Karkehabadi
- Department of Endodontics, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
9
|
Escobar LM, Grajales M, Bendahan Z, Jaimes S, Baldión P. Osteoblastic differentiation and changes in the redox state in pulp stem cells by laser treatment. Lasers Med Sci 2024; 39:87. [PMID: 38443654 PMCID: PMC10914891 DOI: 10.1007/s10103-024-04016-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
The aim of this study was to determine the effect of low-level laser therapy (LLLT) on cell proliferation, mitochondrial membrane potential changes (∆Ψm), reactive oxygen species (ROS), and osteoblast differentiation of human dental pulp stem cells (hDPSCs). These cells were irradiated with 660- and 940-nm lasers for 5 s, 50 s, and 180 s. Cell proliferation was assessed using the resazurin assay, cell differentiation by RUNX2 and BMP2 expression, and the presence of calcification nodules using alizarin-red S staining. ROS was determined by the dichlorofluorescein-diacetate technique and changes in ∆Ψm by the tetramethylrhodamine-ester assay. Data were analyzed by a Student's t-test and Mann-Whitney U test. The 940-nm wavelength for 5 and 50 s increased proliferation at 4 days postirradiation. After 8 days, a significant decrease in proliferation was observed in all groups. Calcification nodules were evident in all groups, with a greater staining intensity in cells treated with a 940-nm laser for 50 s, an effect that correlated with increased RUNX2 and BMP2 expression. ROS production and Δψm increased independently of irradiation time. In conclusion, photobiomodulation (PBM) with LLLT induced morphological changes and reduced cell proliferation rate, which was associated with osteoblastic differentiation and increased ROS and Δψm, independent of wavelength and time.
Collapse
Affiliation(s)
- Lina M Escobar
- Grupo de Investigaciones Básicas y Aplicadas en Odontología, IBAPO Facultad de Odontología, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bloque 210, 111321, Bogotá, Colombia.
| | - Marggie Grajales
- Departamento de Salud Oral, Facultad de Odontología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Zita Bendahan
- Unidad de Manejo Integral de Malformaciones Craneofaciales UMIMC, Facultad de Odontología, Universidad El Bosque, Bogotá, Colombia
| | - Sully Jaimes
- Grupo de Investigaciones Básicas y Aplicadas en Odontología, IBAPO Facultad de Odontología, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bloque 210, 111321, Bogotá, Colombia
| | - Paula Baldión
- Departamento de Salud Oral, Facultad de Odontología, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
10
|
Abdolrahmani A, Epstein JB, Samim F. Medication-related osteonecrosis of the jaw: evolving research for multimodality medical management. Support Care Cancer 2024; 32:212. [PMID: 38443685 DOI: 10.1007/s00520-024-08388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024]
Abstract
PURPOSE Medication-related osteonecrosis of the jaw (MRONJ) is a debilitating side effect of antiresorptive and antiangiogenic agents that can lead to progressive bone destruction in the maxillofacial region. Dental surgery, including tooth extractions, commonly trigger the onset of MRONJ. While guidelines suggest avoiding extraction when possible, complete avoidance is not always feasible, as necrosis can develop from dental and periodontal disease without dental procedures. The goal of this article is to provide an update review of current preventive and therapeutic approaches for MRONJ. METHODS A comprehensive electronic search was conducted on PubMed/MEDLINE, Embase, and Scopus databases. All English articles encompassing randomized controlled trials, systematic reviews, observational studies, and case studies were reviewed. The current medical treatments and adjuvant therapies for managing MRONJ patients were critically assessed and summarized. RESULTS Pentoxifylline and alpha tocopherol (PENT-E), teriparatide, photobiomodulation (PBM), photodynamic therapy (PDT), and the use of growth factors have shown to enhance healing in MRONJ patients. Implementing these methods alone or in conjunction with surgical treatment has been linked to reduced discomfort and improved wound healing and increased new bone formation. DISCUSSION While several adjuvant treatment modalities exhibit promising results in facilitating the healing process, current clinical practice guidelines predominantly recommend antibiotic therapy as a non-surgical approach, primarily addressing secondary infections in necrotic areas. However, this mainly addresses the potential infectious complication of MRONJ. Medical approaches including PENT-E, teriparatide, PBM, and PDT can result in successful management and should be considered prior to taking a surgical approach. Combined medical management for both preventing and managing MRONJ holds potential for achieving optimal clinical outcomes and avoiding surgical intervention, requiring further validation through larger studies and controlled trials.
Collapse
Affiliation(s)
- Ali Abdolrahmani
- Oral Medicine & Oral Pathology Clinic, Montreal General Hospital, Montreal, QC, Canada
| | - Joel B Epstein
- Department of Surgery, City of Hope National Cancer Center, Duarte, CA, USA
- Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Firoozeh Samim
- Faculty of Dental Medicine and Oral Health, McGill University, Montreal, QC, Canada.
| |
Collapse
|
11
|
Albaqami M, Aguida B, Pourmostafa A, Ahmad M, Kishore V. Photobiomodulation effects of blue light on osteogenesis are induced by reactive oxygen species. Lasers Med Sci 2023; 39:5. [PMID: 38091111 DOI: 10.1007/s10103-023-03951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Blue light-mediated photobiomodulation (PBM) is a promising approach to promote osteogenesis. However, the underlying mechanisms of PBM in osteogenesis are poorly understood. In this study, a human osteosarcoma cell line (i.e., Saos-2 cells) was subjected to intermittent blue light exposure (2500 µM/m2/s, 70 mW/cm2, 4.2 J/cm2, once every 48 h) and the effects on Saos-2 cell viability, metabolic activity, differentiation, and mineralization were investigated. In addition, this study addressed a possible role of blue light induced cellular oxidative stress as a mechanism for enhanced osteoblast differentiation and mineralization. Results showed that Saos-2 cell viability and metabolic activity were maintained upon blue light exposure compared to unilluminated controls, indicating no negative effects. To the contrary, blue light exposure significantly increased (p < 0.05) alkaline phosphatase activity and Saos-2 cell mediated mineralization. High-performance liquid chromatography (HPLC) assay was used for measurement of reactive oxygen species (ROS) activity and showed a significant increase (p < 0.05) in superoxide (O2•-) and hydrogen peroxide (H2O2) formed after blue light exposure. Together, these results suggest that the beneficial effects of blue light-mediated PBM on osteogenesis may be induced by controlled release of ROS.
Collapse
Affiliation(s)
- Maria Albaqami
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 W. University Blvd, Melbourne, FL, 32901, USA
| | - Blanche Aguida
- UMR8256, CNRS, IBPS, Sorbonne, Université, Paris, France
| | - Ayda Pourmostafa
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 W. University Blvd, Melbourne, FL, 32901, USA
| | - Margaret Ahmad
- UMR8256, CNRS, IBPS, Sorbonne, Université, Paris, France
| | - Vipuil Kishore
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 W. University Blvd, Melbourne, FL, 32901, USA.
| |
Collapse
|
12
|
Li H, Wang S, Hui Y, Ren Y, Li J, Lan X, Wang Y. The implication of blue light-emitting diode on mesenchymal stem cells: a systematic review. Lasers Med Sci 2023; 38:267. [PMID: 37981584 DOI: 10.1007/s10103-023-03908-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023]
Abstract
The application of blue light (400-480 nm) in photobiotherapy remains controversial. This systematic review aimed to collect and analyze the biological effects of blue light-emitting diode (LED) on mesenchymal stem cells (MSCs). Inclusion and exclusion criteria were formulated, and relevant English articles from January 1982 to September 2022 were searched in PubMed, Scopus, and Web of Science. Nine articles with a medium (n = 4) to low (n = 5) risk of bias were included. Most of the MSCs reported were derived from human tissue; only one article used MSCs derived from mouse. The wavelength of the LED used was in the 400-480 nm range, and the irradiation modes were continuous (n = 8) and pulse waves (n = 1). A chiral polarizer was used in one such study in which the irradiance was 14 mW/cm2 and the irradiation time was 24 h. The energy densities used in other studies were between 0.378 and 72 J/cm2, and the irradiation times were between 10 and 3600 s. Blue LED light can inhibit proliferation and promote differentiation of MSCs in an appropriate energy density range, which may be related to the activation of transient receptor potential vanilloid 1 (TRPV1). Additionally, polarized light may reduce the toxic effects of blue light on MSCs. However, the heterogeneity of the design schemes and LED parameters, as well as the small number of studies, limited the conclusiveness of the review. Therefore, further studies are needed to determine the optimal irradiation strategy for promoting MSC function.
Collapse
Affiliation(s)
- Hao Li
- Department of Preventive Health Care, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Shifen Wang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Yining Hui
- Southwest Medical University School of Clinical Medicine, Luzhou, 646000, China
| | - Yajiao Ren
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Jiaxin Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Yao Wang
- Department of Preventive Health Care, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China.
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
13
|
Thammasart S, Namchaiw P, Pasuwat K, Tonsomboon K, Khantachawana A. Attenuation Aβ1-42-induced neurotoxicity in neuronal cell by 660nm and 810nm LED light irradiation. PLoS One 2023; 18:e0283976. [PMID: 37478089 PMCID: PMC10361470 DOI: 10.1371/journal.pone.0283976] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/21/2023] [Indexed: 07/23/2023] Open
Abstract
Oligomeric amyloid-β 1-42 (Aβ1-42) has a close correlation with neurodegenerative disorder especially Alzheimer's disease (AD). It induces oxidative stress and mitochondrial damage in neurons. Therefore, it is used to generate AD-like in vitro model for studying neurotoxicity and neuroprotection against amyloid-β. A low-level light therapy (LLLT) is a non-invasive method that has been used to treat several neurodegenerative disorders. In this study, the red wavelength (660nm) and near infrared wavelength (810nm) at energy densities of 1, 3, and 5 J/cm2 were used to modulate biochemical processes in the neural cells. The exposure of Aβ1-42 resulted in cell death, increased intracellular reactive oxygen species (ROS), and retracted neurite outgrowth. We showed that both of LLLT wavelengths could protect neurons form Aβ1-42-induced neurotoxicity in a biphasic manner. The treatment of LLLT at 3 J/cm2 potentially alleviated cell death and recovered neurite outgrowth. In addition, the treatment of LLLT following Aβ1-42 exposure could attenuate the intracellular ROS generation and Ca2+ influx. Interestingly, both wavelengths could induce minimal level of ROS generation. However, they did not affect cell viability. In addition, LLLT also stimulated Ca2+ influx, but not altered mitochondrial membrane potential. This finding indicated LLLT may protect neurons through the stimulation of secondary signaling messengers such as ROS and Ca2+. The increase of these secondary messengers was in a functional level and did not harmful to the cells. These results suggested the use of LLLT as a tool to modulate the neuronal toxicity following Aβ1-42 accumulation in AD's brain.
Collapse
Affiliation(s)
- Siriluk Thammasart
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, Thailand
| | - Poommaree Namchaiw
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, Thailand
- Neuroscience Center for Research and Innovation, Learning Institute, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, Thailand
| | - Kwanchanok Pasuwat
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, Thailand
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, Thailand
| | - Khaow Tonsomboon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Anak Khantachawana
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, Thailand
- Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, Thailand
| |
Collapse
|
14
|
Epstein JB, Arany PR, Yost SE, Yuan Y. Medication-Related Osteonecrosis of the Jaw: Successful Medical Management of Complex Maxillary Alveolus with Sinus Involvement. Case Rep Oncol 2023; 16:397-413. [PMID: 37384201 PMCID: PMC10294216 DOI: 10.1159/000529502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/31/2023] [Indexed: 06/30/2023] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) in cancer patients presents a considerable challenge in management. Current management is primarily based on interventions in a limited number of cases assessing a single approach. Medical management typically is reported to include antimicrobial therapy with or without surgery. Advances in the understanding of pathogenesis have led to the investigation of additional medical interventions for early-stage necrosis. We present 3 patients with advanced-stage MRONJ of the maxilla using combined medical modalities including antimicrobial therapy, photobiomodulation therapy, pentoxifylline, vitamin E, and synthetic parathyroid hormone. All patients had a good outcome and avoided surgical intervention. We also report biological and functional imaging that may assist in more effective diagnosis and management of MRONJ. The 3 patients reported suggest that combined medical management should be considered in all cases of MRONJ (including stage III) prior to determining if surgical intervention is required. Functional imaging with a technetium bone scan or positron emission tomography scan correlated with diagnosis and confirmed resolution in patients. We present 3 challenging MRONJ patients that were effectively managed with a combined medical and nonsurgical therapy that demonstrated good clinical outcomes avoiding surgical interventions.
Collapse
Affiliation(s)
- Joel B. Epstein
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Praveen R. Arany
- Department of Oral Biology, Surgery, and Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| | - Susan E. Yost
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Yuan Yuan
- Division of Medical Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
15
|
Arranz-Paraíso D, Sola Y, Baeza-Moyano D, Benítez-Martínez M, Melero-Tur S, González-Lezcano RA. Mitochondria and light: An overview of the pathways triggered in skin and retina with incident infrared radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 238:112614. [PMID: 36469983 DOI: 10.1016/j.jphotobiol.2022.112614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Slightly more than half of the solar radiation that passes through the atmosphere and reaches the Earth's surface is infrared. Over the past few years, many papers have been published on the possible positive effects of receiving this part of the electromagnetic spectrum. In this article we analyse the role of mitochondria in the supposed effects of infrared light based on the published literature. It is claimed that ATP synthesis is stimulated, which has a positive effect on the skin by increasing fibroblast proliferation, anchorage and production of collagen fibres, procollagen, and various cytokines responsible for the wound healing process, such as keratinocyte growth factor. Currently there are infrared light emitting equipment whose manufacturers and the centres where this service or treatment is offered claim that they are used for skin rejuvenation among other positive effects. Based on the literature review, it is necessary to deepen the scientific study of the mechanism of absorption of infrared radiation through the skin to better understand its possible positive effects, the risks of overexposure and to improve consumer health protection.
Collapse
Affiliation(s)
- Daniel Arranz-Paraíso
- Área de conocimiento de Tecnología Farmacéutica, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Alcorcón, Madrid, Spain.
| | - Yolanda Sola
- Group of Meteorology, Department of Applied Physics, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| | - David Baeza-Moyano
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Alcorcón, Madrid, Spain.
| | - Marta Benítez-Martínez
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Alcorcón, Madrid, Spain.
| | - Sofía Melero-Tur
- Departamento de arquitectura y diseño, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Alcorcón, Madrid, Spain.
| | - Roberto Alonso González-Lezcano
- Departamento de arquitectura y diseño, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Alcorcón, Madrid, Spain.
| |
Collapse
|
16
|
Yu Y, Yu T, Wang X, Liu D. Functional Hydrogels and Their Applications in Craniomaxillofacial Bone Regeneration. Pharmaceutics 2022; 15:pharmaceutics15010150. [PMID: 36678779 PMCID: PMC9864650 DOI: 10.3390/pharmaceutics15010150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Craniomaxillofacial bone defects are characterized by an irregular shape, bacterial and inflammatory environment, aesthetic requirements, and the need for the functional recovery of oral-maxillofacial areas. Conventional clinical treatments are currently unable to achieve high-quality craniomaxillofacial bone regeneration. Hydrogels are a class of multifunctional platforms made of polymers cross-linked with high water content, good biocompatibility, and adjustable physicochemical properties for the intelligent delivery of goods. These characteristics make hydrogel systems a bright prospect for clinical applications in craniomaxillofacial bone. In this review, we briefly demonstrate the properties of hydrogel systems that can come into effect in the field of bone regeneration. In addition, we summarize the hydrogel systems that have been developed for craniomaxillofacial bone regeneration in recent years. Finally, we also discuss the prospects in the field of craniomaxillofacial bone tissue engineering; these discussions can serve as an inspiration for future hydrogel design.
Collapse
Affiliation(s)
- Yi Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Correspondence: (X.W.); (D.L.)
| | - Dawei Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
- Correspondence: (X.W.); (D.L.)
| |
Collapse
|
17
|
Peng J, Zhao J, Tang Q, Wang J, Song W, Lu X, Huang X, Chen G, Zheng W, Zhang L, Han Y, Yan C, Wan Q, Chen L. Low intensity near-infrared light promotes bone regeneration via circadian clock protein cryptochrome 1. Int J Oral Sci 2022; 14:53. [PMID: 36376275 PMCID: PMC9663728 DOI: 10.1038/s41368-022-00207-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/04/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Bone regeneration remains a great clinical challenge. Low intensity near-infrared (NIR) light showed strong potential to promote tissue regeneration, offering a promising strategy for bone defect regeneration. However, the effect and underlying mechanism of NIR on bone regeneration remain unclear. We demonstrated that bone regeneration in the rat skull defect model was significantly accelerated with low-intensity NIR stimulation. In vitro studies showed that NIR stimulation could promote the osteoblast differentiation in bone mesenchymal stem cells (BMSCs) and MC3T3-E1 cells, which was associated with increased ubiquitination of the core circadian clock protein Cryptochrome 1 (CRY1) in the nucleus. We found that the reduction of CRY1 induced by NIR light activated the bone morphogenetic protein (BMP) signaling pathways, promoting SMAD1/5/9 phosphorylation and increasing the expression levels of Runx2 and Osterix. NIR light treatment may act through sodium voltage-gated channel Scn4a, which may be a potential responder of NIR light to accelerate bone regeneration. Together, these findings suggest that low-intensity NIR light may promote in situ bone regeneration in a CRY1-dependent manner, providing a novel, efficient and non-invasive strategy to promote bone regeneration for clinical bone defects.
Collapse
|
18
|
Pierfelice TV, D’Amico E, Petrini M, Pandolfi A, D’Arcangelo C, Di Pietro N, Piattelli A, Iezzi G. The Effects of 5% 5-Aminolevulinic Acid Gel and Red Light (ALAD-PDT) on Human Fibroblasts and Osteoblasts. Gels 2022; 8:gels8080491. [PMID: 36005091 PMCID: PMC9407194 DOI: 10.3390/gels8080491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/23/2022] Open
Abstract
This study aimed to evaluate the effects of a new photodynamic protocol (ALAD-PDT), consisting of 5% 5-aminolevulinic acid-gel and 630 nm-LED, already used for antibacterial effects in the treatment of periodontitis, on human gingival fibroblasts (HGF) and primary human osteoblasts (HOB). HGF and HOB were incubated with different ALAD concentrations for 45 min, and subsequently irradiated with 630 nm-LED for 7 min. Firstly, the cytotoxicity at 24 h and proliferation at 48 and 72 h were assessed. Then the intracellular content of the protoporphyrin IX (PpIX) of the ROS and the superoxide dismutase (SOD) activity were investigated at different times. Each result was compared with untreated and unirradiated cells as the control. Viable and metabolic active cells were revealed at any concentrations of ALAD-PDT, but only 100-ALAD-PDT significantly enhanced the proliferation rate. The PpIX fluorescence significantly increased after the addition of 100-ALAD, and decreased after the irradiation. Higher ROS generation was detected at 10 min in HGF, and at 30 min in HOB. The activity of the SOD enzyme augmented at 30 min in both cell types. In conclusion, ALAD-PDT not only showed no cytotoxic effects, but had pro-proliferative effects on HGF and HOB, probably via ROS generation.
Collapse
Affiliation(s)
- Tania Vanessa Pierfelice
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Emira D’Amico
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Morena Petrini
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Correspondence: ; Tel.: +39-0871-355-4083
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Camillo D’Arcangelo
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
- Dental School, University of Belgrade, 11000 Belgrade, Serbia
- Fondazione Villa Serena per la Ricerca, 65013 Città Sant’Angelo, Italy
- Casa di Cura Villa Serena del Dott. L. Petruzzi, 65013 Città Sant’Angelo, Italy
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
19
|
Li M, Zhu Y, Pei Q, Deng Y, Ni T. The 532 nm Laser Treatment Promotes the Proliferation of Tendon-Derived Stem Cells and Upregulates Nr4a1 to Stimulate Tenogenic Differentiation. Photobiomodul Photomed Laser Surg 2022; 40:543-553. [PMID: 35904935 DOI: 10.1089/photob.2022.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: This study aimed to verify the effect of photobiomodulation therapy (PBMT) with a wavelength of 532 nm on the proliferation and differentiation of tendon-derived stem cells (TDSCs) of Sprague-Dawley (SD) rats. Background: The combination of PBMT and stem cell transplantation with TDSCs provides a new treatment strategy for tendon injury. Nevertheless, the effect of PBMT on the biological behavior of TDSCs and its internal mechanisms remain unclear. Methods: TDSCs were isolated from Achilles tendons of SD rats and identified by cell morphology and flow cytometric analysis. Energy density gradient experiment was performed to determine the ideal energy. Then, TDSCs were treated with PBMT using a wavelength of 532 nm at a fluence of 15 J/cm2 in 532 nm laser group, and the TDSC in control group were not treated with 532 nm laser. Cell response after irradiation was observed to ascertain cell morphology and cell proliferation in the 532 nm laser group and the control group. The RNA expression levels of the key genes of TDSC differentiation, including scleraxis (Scx), tenomodulin (Tnmd), Mohawk homeobox (Mkx), Decorin (Dcn), peroxisome proliferator-activated receptor gamma (PPARγ), SRY-box transcription factor 9 (Sox9), and RUNX family transcription factor 2 (Runx2), were detected by reverse transcription-polymerase chain reaction. Then, gene chip microarray was used to detect the expression of differential genes after 532 nm laser intervention in TDSCs, and the target genes were screened out to verify the role in this process in vitro and in vivo. Results: When the 532 nm laser energy density was 15 J/cm2, the proliferation capacity of TDSCs was improved (2.73 ± 0.24 vs. 1.81 ± 0.71, p < 0.05), and the expression of genes related to tenogenic differentiation of TDSCs was significantly increased (p < 0.01). After RNA sequencing and bioinformatics analyses, we speculated that nuclear receptor subfamily 4 group A member 1 (Nr4a1) was involved in the tenogenic differentiation process of TDSCs regulated by 532 nm laser treatment. Subsequent experiments confirmed that Nr4a1 regulated the expression of the tenogenic differentiation genes Scx and Tnmd in TDSCs. Conclusions: A 532 nm laser with 15 J/cm2 regulated the process of TDSC proliferation and upregulated Nr4a1 to stimulate tenogenic differentiation.
Collapse
Affiliation(s)
- Ming Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Zhu
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Pei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhao Deng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Ni
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Dalle Carbonare L, Bertacco J, Gaglio SC, Minoia A, Cominacini M, Cheri S, Deiana M, Marchetto G, Bisognin A, Gandini A, Antoniazzi F, Perduca M, Mottes M, Valenti MT. Fisetin: An Integrated Approach to Identify a Strategy Promoting Osteogenesis. Front Pharmacol 2022; 13:890693. [PMID: 35652047 PMCID: PMC9149166 DOI: 10.3389/fphar.2022.890693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Flavonoids may modulate the bone formation process. Among flavonoids, fisetin is known to counteract tumor growth, osteoarthritis, and rheumatoid arthritis. In addition, fisetin prevents inflammation-induced bone loss. In order to evaluate its favorable use in osteogenesis, we assayed fisetin supplementation in both in vitro and in vivo models and gathered information on nanoparticle-mediated delivery of fisetin in vitro and in a microfluidic system. Real-time RT-PCR, Western blotting, and nanoparticle synthesis were performed to evaluate the effects of fisetin in vitro, in the zebrafish model, and in ex vivo samples. Our results demonstrated that fisetin at 2.5 µM concentration promotes bone formation in vitro and mineralization in the zebrafish model. In addition, we found that fisetin stimulates osteoblast maturation in cell cultures obtained from cleidocranial dysplasia patients. Remarkably, PLGA nanoparticles increased fisetin stability and, consequently, its stimulating effects on RUNX2 and its downstream gene SP7 expression. Therefore, our findings demonstrated the positive effects of fisetin on osteogenesis and suggest that patients affected by skeletal diseases, both of genetic and metabolic origins, may actually benefit from fisetin supplementation.
Collapse
Affiliation(s)
| | - Jessica Bertacco
- Department of Medicine, University of Verona, Verona, Italy.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Arianna Minoia
- Department of Medicine, University of Verona, Verona, Italy
| | | | - Samuele Cheri
- Department of Medicine, University of Verona, Verona, Italy
| | - Michela Deiana
- Department of Medicine, University of Verona, Verona, Italy
| | | | - Anna Bisognin
- Biocrystallography Lab, Department of Biotechnology, University of Verona, Verona, Italy
| | - Alberto Gandini
- Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, Verona, Italy
| | - Franco Antoniazzi
- Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, Verona, Italy
| | - Massimiliano Perduca
- Biocrystallography Lab, Department of Biotechnology, University of Verona, Verona, Italy
| | - Monica Mottes
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Maria Teresa Valenti
- Department of Medicine, University of Verona, Verona, Italy.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
21
|
Effect of the photobiomodulation for acceleration of the orthodontic tooth movement: a systematic review and meta-analysis. Lasers Med Sci 2022; 37:2323-2341. [PMID: 35304644 DOI: 10.1007/s10103-022-03538-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/25/2022] [Indexed: 01/02/2023]
Abstract
To determine whether the application of photobiomodulation (PBM), as an adjunctive treatment for patients with orthodontic fixed appliances, decreased the total treatment time compared to conventional orthodontics. Studies were collected from four electronic databases following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for systematic reviews. Eligibility criteria were full-text articles in English or Spanish with the design of randomized (RCT), non-randomized clinical trials (non-RCT), and retrospective cohort, without any restriction regarding the publication time, in which the effect of PBM using low-level laser irradiation (LLLI) and light-emitting diode (LED) for the acceleration of the orthodontic movement had been evaluated. Data collection and analysis: Two authors independently extracted data for the characteristics and outcomes of the studies selected for inclusion. The risk of bias (RoB 2 and Robins-I) and the quality assessments (GRADE) were performed. For the quantitative synthesis, the standardized mean difference was calculated for each individual study selected and then the data were combined using a random-effects meta-analysis. The total number of included studies was n = 22 (only RCT and non-RCT were found) with a total of 515 participants. The included studies exhibited high risk of bias and some concerns, though none of them presented a low risk of bias. The quality of the studies was very low. The meta-analysis showed that the means (mm) and 95% confidence intervals (95% CI) of acceleration of tooth movement at 1, 2, and 3 months were 0.50 (- 0.28, 1.28), 1.40 (0.27, 2.53), and 0.46 (- 0.33, 1.24), respectively. The analysis showed that there is no evidence to support the use of LLLI to accelerate the orthodontic movement. LED for the acceleration of orthodontic movement does not have sufficient evidence to generate conclusions about it.
Collapse
|