1
|
Maafi M. Photokinetics of Photothermal Reactions. Molecules 2025; 30:330. [PMID: 39860200 PMCID: PMC11767552 DOI: 10.3390/molecules30020330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Photothermal reactions, involving both photochemical and thermal reaction steps, are the most abundant sequences in photochemistry. The derivation of their rate laws is standardized, but the integration of these rate laws has not yet been achieved. Indeed, the field still lacks integrated rate laws for the description of these reactions' behavior and/or identification of their reaction order. This made difficult a comprehensive account of the photokinetics of photothermal reactions, which created a gap in knowledge. This gap is addressed in the present paper by introducing an unprecedented general model equation capable of mapping out the kinetic traces of such reactions when exposed to light or in the dark. The integrated rate law model equation also applies when the reactive medium is exposed to either monochromatic or polychromatic light irradiation. The validity of the model equation was established against simulated data obtained by a fourth-order Runge-Kutta method. It was then used to describe and quantify several situations of photothermal reactions, such as the effects of initial concentration, spectator molecules, and incident radiation intensity, and the impact of the latter on the photonic yield. The model equation facilitated a general elucidation method to determine the intrinsic reaction parameters (quantum yields and absorptivities of the reactive species) for any photothermal mechanism whose number of species is known. This paper contributes to rationalizing photokinetics along the same general guidelines adopted in chemical kinetics.
Collapse
Affiliation(s)
- Mounir Maafi
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| |
Collapse
|
2
|
Herold D, Kind J, Frieß F, Thiele CM. Extraction of pure component spectra from ex situ illumination UV/Vis and NMR spectroscopy. Photochem Photobiol Sci 2023; 22:2599-2606. [PMID: 37751073 DOI: 10.1007/s43630-023-00475-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/28/2023] [Indexed: 09/27/2023]
Abstract
Obtaining understanding of a photochemical reaction relies on the observation, identification and quantification of the compounds involved. The photochemical properties of the individual components are of particular importance, and their determination, however, is not always trivial. This is also true for the quantitative measure on the ability to absorb light, the extinction coefficient εi if more than one species i is present and two or more species absorb light of the same wavelength. In this work, it is demonstrated how pure component spectra can be obtained with a simple combination of successive and repeated ex situ illumination, UV/Vis and NMR spectroscopy. From the complementary information accessible, the wavelength-dependent extinction coefficients of all species can be calculated yielding the pure component spectra. A comparison with published data shows excellent agreement and thus proves that this approach is highly reliable.
Collapse
Affiliation(s)
- Dominik Herold
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Jonas Kind
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Florian Frieß
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Christina M Thiele
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, 64287, Darmstadt, Germany.
| |
Collapse
|
3
|
Radjagobalou R, Imbratta M, Bergraser J, Gaudeau M, Lyvinec G, Delbrayelle D, Jentzer O, Roudin J, Laroche B, Ognier S, Tatoulian M, Cossy J, Echeverria PG. Selective Photochemical Continuous Flow Benzylic Monochlorination. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robbie Radjagobalou
- Paris FLOW Tech − PSL, ENSCP, 11 rue Pierre et Marie Curie, Paris 75005, France
| | - Miguel Imbratta
- Minakem Recherche, 145 Chemin des Lilas, Beuvry-La-Forêt 59310, France
| | - Julie Bergraser
- Minakem Recherche, 145 Chemin des Lilas, Beuvry-La-Forêt 59310, France
| | - Marion Gaudeau
- Minakem Recherche, 145 Chemin des Lilas, Beuvry-La-Forêt 59310, France
| | - Gildas Lyvinec
- Minakem Recherche, 145 Chemin des Lilas, Beuvry-La-Forêt 59310, France
| | | | - Olivier Jentzer
- Minakem Recherche, 145 Chemin des Lilas, Beuvry-La-Forêt 59310, France
| | - Jérémy Roudin
- Paris FLOW Tech − PSL, ENSCP, 11 rue Pierre et Marie Curie, Paris 75005, France
| | - Benjamin Laroche
- Paris FLOW Tech − PSL, ENSCP, 11 rue Pierre et Marie Curie, Paris 75005, France
| | - Stéphanie Ognier
- Paris FLOW Tech − PSL, ENSCP, 11 rue Pierre et Marie Curie, Paris 75005, France
| | - Michael Tatoulian
- Paris FLOW Tech − PSL, ENSCP, 11 rue Pierre et Marie Curie, Paris 75005, France
| | - Janine Cossy
- Paris FLOW Tech − PSL, ENSCP, 11 rue Pierre et Marie Curie, Paris 75005, France
| | | |
Collapse
|