1
|
Wang X, Li J, Wei X, Song J, Xie J, Li Z, Yuan M, Jiang L, Wang Y, Liang C, Liu W. Photocatalytic Hydrogen Peroxide Production by a Mixed Ligand-Functionalized Uranyl-Organic Framework. ACS OMEGA 2024; 9:33671-33678. [PMID: 39130595 PMCID: PMC11307301 DOI: 10.1021/acsomega.4c02181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 08/13/2024]
Abstract
Hydrogen peroxide (H2O2) production driven by solar energy has received enormous attention due to its high efficiency, low cost, and environmental friendliness characteristics. Searching for new photocatalytic materials for H2O2 production is one of the most important targets. In this work, a new three-dimensional (3D) uranyl-organic framework material was constructed with mixed ligands via a solvothermal reaction and used for photocatalytic H2O2 production. The mixed ligand strategy not only benefits the construction of a 3D uranyl-organic framework but also introduces strong photon absorption groups into the framework. The thiophene and pyridine rings in the framework enhance photon absorption and carrier transfer. In addition, with the assistance of the hydrogen abstraction reaction of uranyl centers, the H2O2 production rate reaches 345 μmol h-1 g-1. This study provides a new blueprint for exploring the artificial photosynthesis of H2O2 through uranium-based metal-organic frameworks.
Collapse
Affiliation(s)
- Xuemin Wang
- School
of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Jinlu Li
- Shandong
Nuclear and Radiation Safety Monitoring Center, No. 145 Jingshi West Road, Jinan 250117, Shandong, China
| | - Xiaoyu Wei
- School
of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Jianxin Song
- School
of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Jian Xie
- School
of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Zhenyu Li
- School
of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Mengnan Yuan
- School
of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Lisha Jiang
- School
of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Yanlong Wang
- State
Key Laboratory of Radiation Medicine and Protection, School for Radiological
and interdisciplinary Sciences (RAD-X) and Collaborative Innovation
Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Chao Liang
- School
of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Wei Liu
- School
of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China
| |
Collapse
|
2
|
Wu Z, Xie Z, Zhu Y, Wang B, Nie Y, Qiu J, Le Z. Solvent-regulated self-assembled carbon nitride for photocatalytic reduction of U(VI) in water. Photochem Photobiol Sci 2024; 23:651-664. [PMID: 38430372 DOI: 10.1007/s43630-024-00541-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/18/2024] [Indexed: 03/03/2024]
Abstract
Manufacturing high-performance and reusable materials from radioactive uranium-containing wastewater remains a significant challenge. Herein, a supramolecular self-assembly strategy was proposed, using melamine and cyanuric acid as precursors and using intermolecular hydrogen bond force to form carbon nitride (CN-D) in different solvents through a single thermal polymerization strategy. Supramolecular self-assembly method is a promising strategy to synthesize a novel carbon nitride with molecular regulatory properties. In addition, 98% of U(VI) in wastewater can be removed by using CN-D for 60 min under visible light. After five cycles of recycling, more than 95% of U(VI) can still be reduced, indicating that it has good recyclability and reusability. This study not only provides an efficient photocatalytic method of uranium reduction, but also provides a new method for self-assembly synthesis.
Collapse
Affiliation(s)
- Zhiwen Wu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China
| | - Zongbo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Ye'an Zhu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China
| | - Bo Wang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China
| | - Yidan Nie
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China
| | - Jialin Qiu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China
| | - Zhanggao Le
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China.
| |
Collapse
|
3
|
Huang S, Jin L, Liu Y, Yang G, Wang A, Le Z, Jiang G, Xie Z. Visible light-mediated synthesis of quinazolinones from benzyl bromides and 2-aminobenzamides without using any photocatalyst or additive. Org Biomol Chem 2024; 22:784-789. [PMID: 38168690 DOI: 10.1039/d3ob01491f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
This paper reports a novel method for the visible-light-mediated synthesis of quinazolinones from the reaction of benzyl bromides with 2-aminobenzamides. The reaction proceeded efficiently at room temperature upon irradiation with an 18 W blue light-emitting diode in air without photocatalysts or additives. By varying the solvent type, substrate molar ratio, and reaction time, the optimal reaction conditions, including the use of methanol solvent, room temperature, and reaction time of 28 h, were identified. Under these conditions, various quinazolinones were obtained using 18 substrates, with the highest yield of 93%. To determine the industrial value of the proposed method, a scale-up reaction was performed and 80% product yield was achieved. Mechanistic studies revealed that the reaction likely proceeded via a radical pathway and that the hydrogen bromide by-product generated during the first step of the reaction of benzyl bromide with 2-aminobenzamide promoted the subsequent step.
Collapse
Affiliation(s)
- Sheng Huang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Liang Jin
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Yufeng Liu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Guoping Yang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Aixin Wang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Zhanggao Le
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Guofang Jiang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Zongbo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| |
Collapse
|