1
|
Stankovic S, Lazic A, Parezanovic M, Stevanovic M, Pavlovic S, Stojiljkovic M, Klaassen K. Transcriptome Profiling of Phenylalanine-Treated Human Neuronal Model: Spotlight on Neurite Impairment and Synaptic Connectivity. Int J Mol Sci 2024; 25:10019. [PMID: 39337507 PMCID: PMC11431966 DOI: 10.3390/ijms251810019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Phenylketonuria (PKU) is the most common inherited disorder of amino acid metabolism, characterized by high levels of phenylalanine (Phe) in the blood and brain, leading to cognitive impairment without treatment. Nevertheless, Phe-mediated brain dysfunction is not fully understood. The objective of this study was to address gene expression alterations due to excessive Phe exposure in the human neuronal model and provide molecular advances in PKU pathophysiology. Hence, we performed NT2/D1 differentiation in culture, and, for the first time, we used Phe-treated NT2-derived neurons (NT2/N) as a novel model for Phe-mediated neuronal impairment. NT2/N were treated with 1.25 mM, 2.5 mM, 5 mM, 10 mM, and 30 mM Phe and subjected to whole-mRNA short-read sequencing. Differentially expressed genes (DEGs) were analyzed and enrichment analysis was performed. Under three different Phe concentrations (2.5 mM, 5 mM, and 10 mM), DEGs pointed to the PREX1, LRP4, CDC42BPG, GPR50, PRMT8, RASGRF2, and CDH6 genes, placing them in the context of PKU for the first time. Enriched processes included dendrite and axon impairment, synaptic transmission, and membrane assembly. In contrast to these groups, the 30 mM Phe treatment group clearly represented the neurotoxicity of Phe, exhibiting enrichment in apoptotic pathways. In conclusion, we established NT2/N as a novel model for Phe-mediated neuronal dysfunction and outlined the Phe-induced gene expression changes resulting in neurite impairment and altered synaptic connectivity.
Collapse
Affiliation(s)
- Sara Stankovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.); (A.L.); (M.P.); (M.S.); (S.P.); (M.S.)
| | - Andrijana Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.); (A.L.); (M.P.); (M.S.); (S.P.); (M.S.)
| | - Marina Parezanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.); (A.L.); (M.P.); (M.S.); (S.P.); (M.S.)
| | - Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.); (A.L.); (M.P.); (M.S.); (S.P.); (M.S.)
- Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Kneza Mihaila 35, 11001 Belgrade, Serbia
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.); (A.L.); (M.P.); (M.S.); (S.P.); (M.S.)
| | - Maja Stojiljkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.); (A.L.); (M.P.); (M.S.); (S.P.); (M.S.)
| | - Kristel Klaassen
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.); (A.L.); (M.P.); (M.S.); (S.P.); (M.S.)
| |
Collapse
|
2
|
Muri R, Maissen-Abgottspon S, Reed MB, Kreis R, Hoefemann M, Radojewski P, Pospieszny K, Hochuli M, Wiest R, Lanzenberger R, Trepp R, Everts R. Compromised white matter is related to lower cognitive performance in adults with phenylketonuria. Brain Commun 2023; 5:fcad155. [PMID: 37265600 PMCID: PMC10231812 DOI: 10.1093/braincomms/fcad155] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 06/03/2023] Open
Abstract
Despite increasing knowledge about the effects of phenylketonuria on brain structure and function, it is uncertain whether white matter microstructure is affected and if it is linked to patients' metabolic control or cognitive performance. Thus, we quantitatively assessed white matter characteristics in adults with phenylketonuria and assessed their relationship to concurrent brain and blood phenylalanine levels, historical metabolic control and cognitive performance. Diffusion tensor imaging and 1H spectroscopy were performed in 30 adults with early-treated classical phenylketonuria (median age 35.5 years) and 54 healthy controls (median age 29.3 years). Fractional anisotropy and mean, axial and radial diffusivity were investigated using tract-based spatial statistics, and white matter lesion load was evaluated. Brain phenylalanine levels were measured with 1H spectroscopy whereas concurrent plasma phenylalanine levels were assessed after an overnight fast. Retrospective phenylalanine levels were collected to estimate historical metabolic control, and a neuropsychological evaluation assessed the performance in executive functions, attention and processing speed. Widespread reductions in mean diffusivity, axial diffusivity and fractional anisotropy occurred in patients compared to controls. Mean diffusivity and axial diffusivity were decreased in several white matter tracts and were most restricted in the optic radiation (effect size rrb = 0.66 to 0.78, P < 0.001) and posterior corona radiata (rrb = 0.83 to 0.90, P < 0.001). Lower fractional anisotropy was found in the optic radiation and posterior corona radiata (rrb = 0.43 to 0.49, P < 0.001). White matter microstructure in patients was significantly associated with cognition. Specifically, inhibition was related to axial diffusivity in the external capsule (rs = -0.69, P < 0.001) and the superior (rs = -0.58, P < 0.001) and inferior longitudinal fasciculi (rs = -0.60, P < 0.001). Cognitive flexibility was associated with mean diffusivity of the posterior limb of the internal capsule (rs = -0.62, P < 0.001), and divided attention correlated with fractional anisotropy of the external capsule (rs = -0.61, P < 0.001). Neither concurrent nor historical metabolic control was significantly associated with white matter microstructure. White matter lesions were present in 29 out of 30 patients (96.7%), most often in the parietal and occipital lobes. However, total white matter lesion load scores were unrelated to patients' cognitive performance and metabolic control. In conclusion, our findings demonstrate that white matter alterations in early-treated phenylketonuria persist into adulthood, are most prominent in the posterior white matter and are likely to be driven by axonal damage. Furthermore, diffusion tensor imaging metrics in adults with phenylketonuria were related to performance in attention and executive functions.
Collapse
Affiliation(s)
- Raphaela Muri
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, 3012 Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3010 Bern, Switzerland
| | - Stephanie Maissen-Abgottspon
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3010 Bern, Switzerland
| | - Murray Bruce Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Roland Kreis
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3010 Bern, Switzerland
- Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
| | - Maike Hoefemann
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3010 Bern, Switzerland
- Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
| | - Piotr Radojewski
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3010 Bern, Switzerland
| | - Katarzyna Pospieszny
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
| | - Michel Hochuli
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
| | - Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3010 Bern, Switzerland
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Regula Everts
- Correspondence to: Regula Everts Department of Diabetes, Endocrinology Nutritional Medicine and Metabolism, Inselspital Bern University Hospital and University of Bern Freiburgstrasse, Bern 3010, Switzerland E-mail:
| |
Collapse
|
3
|
Lotz-Havla AS, Katzdobler S, Nuscher B, Weiß K, Levin J, Havla J, Maier EM. Serum glial fibrillary acidic protein and neurofilament light chain in patients with early treated phenylketonuria. Front Neurol 2022; 13:1011470. [PMID: 36247773 PMCID: PMC9559705 DOI: 10.3389/fneur.2022.1011470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022] Open
Abstract
To pave the way for healthy aging in early treated phenylketonuria (ETPKU) patients, a better understanding of the neurological course in this population is needed, requiring easy accessible biomarkers to monitor neurological disease progression in large cohorts. The objective of this pilot study was to investigate the potential of glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) as blood biomarkers to indicate changes of the central nervous system in ETPKU. In this single-center cross-sectional study, GFAP and NfL concentrations in serum were quantified using the Simoa® multiplex technology in 56 ETPKU patients aged 6–36 years and 16 age matched healthy controls. Correlation analysis and hierarchical linear regression analysis were performed to investigate an association with disease-related biochemical parameters and retinal layers assessed by optical coherence tomography. ETPKU patients did not show significantly higher GFAP concentrations (mean 73 pg/ml) compared to healthy controls (mean 60 pg/ml, p = 0.140). However, individual pediatric and adult ETPKU patients had GFAP concentrations above the healthy control range. In addition, there was a significant association of GFAP concentrations with current plasma tyrosine concentrations (r = −0.482, p = 0.036), a biochemical marker in phenylketonuria, and the retinal inner nuclear layer volume (r = 0.451, p = 0.04). There was no evidence of NfL alterations in our ETPKU cohort. These pilot results encourage multicenter longitudinal studies to further investigate serum GFAP as a complementary tool to better understand and monitor neurological disease progression in ETPKU. Follow-up investigations on aging ETPKU patients are required to elucidate the potential of serum NfL as biomarker.
Collapse
Affiliation(s)
- Amelie S. Lotz-Havla
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Brigitte Nuscher
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Katharina Weiß
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Johannes Levin
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
- Data Integration for Future Medicine (DIFUTURE) Consortium, LMU Munich, Munich, Germany
- *Correspondence: Joachim Havla
| | - Esther M. Maier
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Esther M. Maier
| |
Collapse
|