1
|
Ganeva V, Angelova B, Galutzov B, Goltsev V, Zhiponova M. Extraction of Proteins and Other Intracellular Bioactive Compounds From Baker's Yeasts by Pulsed Electric Field Treatment. Front Bioeng Biotechnol 2020; 8:552335. [PMID: 33384987 PMCID: PMC7770146 DOI: 10.3389/fbioe.2020.552335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
Yeasts are rich source of proteins, antioxidants, vitamins, and other bioactive compounds. The main drawback in their utilization as valuable ingredients in functional foods and dietary supplements production is the thick, indigestible cell wall, as well as the high nucleic acid content. In this study, we evaluated the feasibility of pulsed electric field (PEF) treatment as an alternative method for extraction of proteins and other bioactive intracellular compounds from yeasts. Baker's yeast water suspensions with different concentration (12.5-85 g dry cell weight per liter) were treated with monopolar rectangular pulses using a continuous flow system. The PEF energy required to achieve irreversible electropermeabilization was significantly reduced with the increase of the biomass concentration. Upon incubation of the permeabilized cells in water, only relatively small intracellular compounds were released. Release of 90% of the free amino acids and low molecular UV absorbing compounds, 80% of the glutathione, and ∼40% of the total phenol content was achieved about 2 h after pulsation and incubation of the suspensions at room temperature. At these conditions, the macromolecules (proteins and nucleic acids) were retained largely inside. Efficient protein release (∼90% from the total soluble protein) occurred only after dilution and incubation of the permeabilized cells in buffer with pH 8-9. Protein concentrates obtained by ultrafiltration (10 kDa cut off) had lower nucleic acid content (protein/nucleic acid ratio ∼100/4.5) in comparison with cell lysates obtained by mechanical disintegration. The obtained results allowed to conclude that PEF treatment can be used as an efficient alternative approach for production of yeast extracts with different composition, suitable for application in food, cosmetics and pharmaceutical industries.
Collapse
Affiliation(s)
- Valentina Ganeva
- Biological Faculty, Sofia University “St. Kl. Ohridski”, Sofia, Bulgaria
| | | | | | | | | |
Collapse
|
2
|
Suga M, Goto A, Hatakeyama T. Electrically induced protein release from Schizosaccharomyces pombe cells in a hyperosmotic condition during and following a high electropulsation. J Biosci Bioeng 2007; 103:298-302. [PMID: 17502269 DOI: 10.1263/jbb.103.298] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 12/27/2006] [Indexed: 11/17/2022]
Abstract
A high-electric-field application of fission yeast cells under hyperosmotic conditions improved the electro-induced release of protein and cytoplasmic enzymes. A cell suspension was pulsed at 12.5 kV/cm for 10 ms in a batch system and immediately postincubated at 30 degrees C. The total protein release rate from cells increased in the hypertonic solutions of 1.5-2.5 M sorbitol to approximately threefold higher than those in the hypotonic and isotonic solutions of 0-0.5 M sorbitol. The protein release rate in 2.0 M sorbitol greatly increased up to 4.5 h and then gradually increased after 7.5 h. The maximum activities of cytoplasmic enzymes, such as alcohol dehydrogenase and 3-phosphoglycerate kinase, were obtained at 7.5 h after electropulsation in 2.0 M sorbitol, yielding approximately 90% of the enzyme activity levels found in spheroplast lysate. On the other hand, the release rates of protease in vacuoles and invertase in periplasmic space did not depend on osmotic solutions during electric pulse application.
Collapse
Affiliation(s)
- Minoru Suga
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama City, Toyama 930-8555, Japan.
| | | | | |
Collapse
|
3
|
Brisdelli F, Saliola M, Pascarella S, Luzi C, Franceschini N, Falcone C, Martini F, Bozzi A. Kinetic properties of native and mutagenized isoforms of mitochondrial alcohol dehydrogenase III purified from Kluyveromyces lactis. Biochimie 2004; 86:705-12. [PMID: 15556281 DOI: 10.1016/j.biochi.2004.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Accepted: 08/24/2004] [Indexed: 11/20/2022]
Abstract
By computer modelling and protein engineering we have investigated changes in two amino acid residues located in the coenzyme pocket of the yeast Kluyveromyces lactis mitochondrial alcohol dehydrogenase III. These two residues, Gly 225 and Ala 274, were hypothesized to be involved in the enzyme discrimination between NAD(H) and NADP(H). Upon changing Gly 225 to Ala we produced an enzyme (mutant G225A) showing very little difference from the wild-type. On the contrary, change at position 274 of Phe instead of Ala (mutant A274F) caused a significant increase of K(m) values for NAD(P) and for NADPH and even a more marked decrease in catalytic activity. The k(cat)/K(m) rates for NADP(H) were also decreased in this mutant. Enzymes with the double changes at 225 and 274 (mutant G225A-A274F) showed, apart the substantial low K(m) value for NADPH and its high catalytic efficiency, kinetic parameters relative to coenzymes which were not additive over the single substitutions. Surprisingly, enzymes with changes at the two positions reduced efficiently acetaldehyde, displaying a K(m) value 10-fold lower and a catalytic efficiency sevenfold higher with respect to parent or singularly mutated enzymes. None of the engineered enzymes would convert formaldehyde, glutaraldehyde or aromatic aldehydes but all enzymes reduced propionaldehyde and butyraldehyde at relative reaction rates approximately half of that exhibited by acetaldehyde. Interestingly only mutant A274F was able to oxidize methanol almost as well as ethanol. In addition, this mutant was capable to convert secondary and cyclic alcohols, at a rate not detected in the other isoforms. These results are in general agreement with the prediction that increasing the size of amino acids in the proximity of the coenzyme pocket would hamper the accommodation of NADP but discord the increased affinity for NADPH as well as for alcoholic or aldehydic substrates with high steric hindrance.
Collapse
Affiliation(s)
- Fabrizia Brisdelli
- Department of Biomedical and Technological Sciences, University of L'Aquila, Via Vetoio, Coppito 2, 67100 L'Aquila, Italy
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Dickinson FM, Dack S. The activity of yeast ADH I and ADH II with long-chain alcohols and diols. Chem Biol Interact 2001; 130-132:417-23. [PMID: 11306063 DOI: 10.1016/s0009-2797(00)00266-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The activities of yeast ADH I and ADH II towards long chain alcohols and diols were studied using rather unusual conditions (1.0 M Tris pH 8.75, approximately 0.3 mg/ml enzyme and [S]<<<K(m) ) where the alcohols are oxidised quantitatively in a first-order manner. Plots of the apparent first-order rate constant versus primary alcohol chain length show double peaks with similar values for ethanol and 1-decanol and relatively low values for 1-butanol through to 1-octanol. With the alpha,omega diols only one peak of activity was observed with 1,14-tetradecanediol, the preferred substrate, being oxidised about the same rate as ethanol. Both enzymes were essentially inactive with short-chain diols (C(2)-C(8)). For all of these assays normalised rates with ADH II were about threefold faster than with ADH I.
Collapse
Affiliation(s)
- F M Dickinson
- Department of Biological Sciences, University of Hull, Cottingham Road, HU6 7RX, Hull, UK.
| | | |
Collapse
|
5
|
Bakker BM, Mensonides FI, Teusink B, van Hoek P, Michels PA, Westerhoff HV. Compartmentation protects trypanosomes from the dangerous design of glycolysis. Proc Natl Acad Sci U S A 2000; 97:2087-92. [PMID: 10681445 PMCID: PMC15758 DOI: 10.1073/pnas.030539197] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Unlike in other organisms, in trypanosomes and other Kinetoplastida the larger part of glycolysis takes place in a specialized organelle, called the glycosome. At present it is impossible to remove the glycosome without changing much of the rest of the cell. It would seem impossible, therefore, to assess the metabolic consequences of this compartmentation. Therefore, we here develop a computer experimentation approach, which we call computational cell biology. A validated molecular kinetic computer replica was built of glycolysis in the parasite Trypanosoma brucei. Removing the glycosome membrane in that replica had little effect on the steady-state flux, which argues against the prevalent speculation that glycosomes serve to increase flux by concentrating the enzymes. Removal of the membrane did cause (i) the sugar phosphates to rise to unphysiologically high levels, which must have pathological effects, and (ii) a failure to recover from glucose deprivation. We explain these effects on the basis of the biochemical organization of the glycosome. We conclude (i) that the glycosome protects trypanosomes from the negative side effects of the "turbo" structure of glycolysis and (ii) that computer experimentation based on solid molecular data is a powerful tool to address questions that are not, or not yet, accessible to experimentation.
Collapse
Affiliation(s)
- B M Bakker
- Molecular Cell Physiology, BioCentrum Amsterdam, Vrije Universiteit, De Boelelaan 1087, NL-1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
6
|
Ganeva V, Galutzov B. Electropulsation as an alternative method for protein extraction from yeast. FEMS Microbiol Lett 1999; 174:279-84. [PMID: 10339820 DOI: 10.1111/j.1574-6968.1999.tb13580.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The application of series of high intensity electric pulses to a yeast suspension provoked a considerable release of some cytoplasmic proteins, glutathione reductase, 3-phosphoglycerate kinase and alcohol dehydrogenase. A maximal yield was achieved 3-8 h after pulsation. The electro-induced protein efflux was accelerated by pretreatment with the reducing agent dithiothreitol and showed a strong dependence on the growth phase and the presence of monovalent ions in the post-pulse incubation medium. The results obtained for two strains of Saccharomyces cerevisiae, PV3 (diploid) and Y47 (wild haploid), showed that electropulsation can be used for the effective extraction of cytoplasmic proteins with a preserved functional activity.
Collapse
Affiliation(s)
- V Ganeva
- Department of Biophysics and Radiobiology, Faculty of Biology, Sofia University, Bulgaria.
| | | |
Collapse
|
7
|
Cabrera N, Rangel P, Hernández-Muñoz R, Pérez-Montfort R. Purification of alcohol dehydrogenase from Entamoeba histolytica and Saccharomyces cerevisiae using zinc-affinity chromatography. Protein Expr Purif 1997; 10:340-4. [PMID: 9268681 DOI: 10.1006/prep.1997.0742] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have developed a single-step method for the purification of NADP(+)-dependent alcohol dehydrogenase from Entamoeba histolytica and NAD(+)-dependent alcohol dehydrogenase from Saccharomyces cerevisiae. It is based on the affinity for zinc of both enzymes. The amebic enzyme was purified almost 800 times with a recovery of 54% and the yeast enzyme was purified 30 times with a recovery of 100%. The kinetic constants of the purified enzymes were similar to those reported for other purification methods. With mammalian alcohol dehydrogenase, we obtained a 40-kDa band suggestive of purified alcohol dehydrogenase, but we failed to retain enzymatic activity in this preparation. Our results suggest that the described method is more applicable to the purification of tetrameric alcohol dehydrogenases.
Collapse
Affiliation(s)
- N Cabrera
- Departamento de Microbiologia, Instituto de Fisiología Celular, U.N.A.M., México D.F., México
| | | | | | | |
Collapse
|
8
|
Bozzi A, Saliola M, Falcone C, Bossa F, Martini F. Structural and biochemical studies of alcohol dehydrogenase isozymes from Kluyveromyces lactis. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1339:133-42. [PMID: 9165108 DOI: 10.1016/s0167-4838(96)00225-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cytosolic and mitochondrial alcohol dehydrogenases from Kluyveromyces lactis (KlADHs) were purified and characterised. Both the N-terminally blocked cytosolic isozymes, KlADH I and KlADH II, were strictly NAD-dependent and exhibited catalytic properties similar to those previously reported for other yeast ADHs. Conversely, the mitochondrial isozymes, KlADH III and KlADH IV, displayed Ala and Asn, respectively, as N-termini and were able to oxidise at an increased rate primary alcohols with aliphatic chains longer than ethanol, such as propanol, butanol, pentanol and hexanol. Interestingly, the mitochondrial KlADHs, at variance with cytosolic isozymes and the majority of ADHs from other sources, were capable of accepting as a cofactor, and in some case almost equally well, either NAD or NADP. Since Asp-223 of horse liver ADH, thought to be responsible for the selection of NAD as coenzyme, is strictly conserved in all the KlADH isozymes, this amino-acid residue should not be considered critical for the coenzyme discrimination with respect to the other residues lining the coenzyme binding pocket of the mitochondrial isozymes. The relatively low specificity of the mitochondrial KlADHs both toward the alcohols and the cofactor could be explained on the basis of an enhanced flexibility of the corresponding catalytic pockets. An involvement of the mitochondrial KlADH isozymes in the physiological reoxidation of the cytosolic NADPH was also hypothesized. Moreover, both cytosolic and KlADH IV isozymes have an additional cysteine, not involved in zinc binding, that could be responsible for the increased activity in the presence of 2-mercaptoethanol.
Collapse
Affiliation(s)
- A Bozzi
- Department of Technological and Biomedical Sciences, University of L'Aquila, Italy
| | | | | | | | | |
Collapse
|
9
|
De Bolle X, Vinals C, Prozzi D, Paquet JY, Leplae R, Depiereux E, Vandenhaute J, Feytmans E. Identification of residues potentially involved in the interactions between subunits in yeast alcohol dehydrogenases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 231:214-9. [PMID: 7628473 DOI: 10.1111/j.1432-1033.1995.tb20689.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The lack of crystal structure for tetrameric yeast alcohol dehydrogenases (ADHs) has precluded, until now, the identification of the residues involved in subunit contacts. In order to address this question, we have characterized the thermal stability and dissociation propensity of native ADH I and ADH II isozymes as well as of several chimeric (ADH I-ADH II) enzymes. Three groups of substitutions affecting the thermostability have been identified among the 24 substitutions observed between isozymes I and II. The first group contains a Cys277-->Ser substitution, located at the interface between subunits in a three-dimensional model of ADH I, based on the crystallographic structure of the dimeric horse liver ADH. In the second group, the Asp236-->Asn substitution is located in the same interaction zone on the model. The stabilizing effect of this substitution can result from the removal of a charge repulsion between subunits. It is shown that the effect of these two groups of substitutions correlates with changes in dissociation propensities. The third group contains the Met168-->Arg substitution that increases the thermal stability, probably by the formation of an additional salt bridge between subunits through the putative interface. These data suggest that at least part of the subunit contacts observed in horse liver ADH are located at homologous positions in yeast ADHs.
Collapse
Affiliation(s)
- X De Bolle
- Département de Biologie, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Purification and properties of alcohol dehydrogenase from the acid- and ethanol-tolerant yeast Candida solicola. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/0922-338x(91)90341-d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
|
12
|
Verduyn C, Breedveld GJ, Scheffers WA, Van Dijken JP. Substrate specificity of alcohol dehydrogenase from the yeastHansenyls polymorpha CBS 4732 andCandida utilis CBS 621. Yeast 1988. [DOI: 10.1002/yea.320040208] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
13
|
Neale AD, Scopes RK, Wettenhall RE, Hoogenraad NJ. Pyruvate decarboxylase of Zymomonas mobilis: isolation, properties, and genetic expression in Escherichia coli. J Bacteriol 1987; 169:1024-8. [PMID: 3546263 PMCID: PMC211896 DOI: 10.1128/jb.169.3.1024-1028.1987] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Pyruvate decarboxylase (EC 4.1.1.1) from Zymomonas mobilis purified to homogeneity by using dye-ligand and ion-exchange chromatography. Antibodies produced against the enzyme and the amino-terminal sequence obtained for the pure enzyme were used to select and confirm the identity of a genomic clone encoding the enzyme selected from a genomic library of Z. mobilis DNA cloned into pUC9. The genomic fragment encoding the enzyme expressed high levels of pyruvate decarboxylase in Escherichia coli. Possible RNA polymerase and ribosome-binding sites have been identified in the 5'-untranslated region of the pyruvate decarboxylase gene.
Collapse
|
14
|
Welch P, Scopes RK. Studies on cell-free metabolism: Ethanol production by a yeast glycolytic system reconstituted from purified enzymes. J Biotechnol 1985. [DOI: 10.1016/0168-1656(85)90029-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Kovář J, Stejskal J. Rapid chromatographic purification of yeast alcohol dehydrogenase. J Chromatogr A 1985. [DOI: 10.1016/s0021-9673(00)96044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Millar DG, Griffiths-Smith K, Algar E, Scopes RK. Activity and stability of glycolytic enzymes in the presence of ethanol. Biotechnol Lett 1982. [DOI: 10.1007/bf00127792] [Citation(s) in RCA: 69] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|