1
|
Vasilev C, Swainsbury DJK, Cartron ML, Martin EC, Kumar S, Hobbs JK, Johnson MP, Hitchcock A, Hunter CN. FRET measurement of cytochrome bc 1 and reaction centre complex proximity in live Rhodobacter sphaeroides cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148508. [PMID: 34793767 DOI: 10.1016/j.bbabio.2021.148508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/27/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022]
Abstract
In the model purple phototrophic bacterium Rhodobacter (Rba.) sphaeroides, solar energy is converted via coupled electron and proton transfer reactions within the intracytoplasmic membranes (ICMs), infoldings of the cytoplasmic membrane that form spherical 'chromatophore' vesicles. These bacterial 'organelles' are ideal model systems for studying how the organisation of the photosynthetic complexes therein shape membrane architecture. In Rba. sphaeroides, light-harvesting 2 (LH2) complexes transfer absorbed excitation energy to dimeric reaction centre (RC)-LH1-PufX complexes. The PufX polypeptide creates a channel that allows the lipid soluble electron carrier quinol, produced by RC photochemistry, to diffuse to the cytochrome bc1 complex, where quinols are oxidised to quinones, with the liberated protons used to generate a transmembrane proton gradient and the electrons returned to the RC via cytochrome c2. Proximity between cytochrome bc1 and RC-LH1-PufX minimises quinone/quinol/cytochrome c2 diffusion distances within this protein-crowded membrane, however this distance has not yet been measured. Here, we tag the RC and cytochrome bc1 with yellow or cyan fluorescent proteins (YFP/CFP) and record the lifetimes of YFP/CFP Förster resonance energy transfer (FRET) pairs in whole cells. FRET analysis shows that that these complexes lie on average within 6 nm of each other. Complementary high-resolution atomic force microscopy (AFM) of intact, purified chromatophores verifies the close association of cytochrome bc1 complexes with RC-LH1-PufX dimers. Our results provide a structural basis for the close kinetic coupling between RC-LH1-PufX and cytochrome bc1 observed by spectroscopy, and explain how quinols/quinones and cytochrome c2 shuttle on a millisecond timescale between these complexes, sustaining efficient photosynthetic electron flow.
Collapse
Affiliation(s)
- Cvetelin Vasilev
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom.
| | - David J K Swainsbury
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Michael L Cartron
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Elizabeth C Martin
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Sandip Kumar
- Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7HR, United Kingdom; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Jamie K Hobbs
- Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7HR, United Kingdom
| | - Matthew P Johnson
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Andrew Hitchcock
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - C Neil Hunter
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| |
Collapse
|
2
|
Asztalos E, Sipka G, Maróti P. Fluorescence relaxation in intact cells of photosynthetic bacteria: donor and acceptor side limitations of reopening of the reaction center. PHOTOSYNTHESIS RESEARCH 2015; 124:31-44. [PMID: 25527461 DOI: 10.1007/s11120-014-0070-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/12/2014] [Indexed: 06/04/2023]
Abstract
The dark relaxation of the yield of variable BChl fluorescence in the 10(-5)-10 s time range is measured after laser diode (808 nm) excitation of variable duration in intact cells of photosynthetic bacteria Rba. sphaeroides, Rsp. rubrum, and Rvx. gelatinosus under various treatments of redox agents, inhibitors, and temperature. The kinetics of the relaxation is complex and much wider extended than a monoexponential function. The longer is the excitation, the slower is the relaxation which is determined by the redox states, sizes, and accessibility of the pools of cytochrome [Formula: see text] and quinone for donor and acceptor side-limited bacterial strains, respectively. The kinetics of fluorescence decay reflects the opening kinetics of the closed RC. The relaxation is controlled preferentially by the rate of re-reduction of the oxidized dimer by mobile cytochrome [Formula: see text] in Rba. sphaeroides and Rsp. rubrum and by the rate constant of the [Formula: see text] interquinone electron transfer, (350 μs)(-1) and/or the quinol/quinone exchange at the acceptor side in Rvx. gelatinosus. The commonly used acceptor side inhibitors (e.g., terbutryn) demonstrate kinetically limited block of re-oxidation of the primary quinone. The observations are interpreted in frame of a minimum kinetic and energetic model of electron transfer reactions in bacterial RC of intact cells.
Collapse
Affiliation(s)
- Emese Asztalos
- Department of Medical Physics, University of Szeged, Szeged, Rerrich Béla tér 1, 6720, Hungary
| | | | | |
Collapse
|
3
|
Verméglio A, Joliot P. Modulation of the redox state of quinones by light in Rhodobacter sphaeroides under anaerobic conditions. PHOTOSYNTHESIS RESEARCH 2014; 120:237-246. [PMID: 24379133 DOI: 10.1007/s11120-013-9961-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/16/2013] [Indexed: 06/03/2023]
Abstract
Illumination of intact cells of Rhodobacter sphaeroides under anaerobic conditions has a dual effect on the redox state of the quinone pool. A large oxidation of the quinone pool is observed during the first seconds following the illumination. This oxidation is suppressed by the addition of an uncoupler in agreement with a light-induced reverse electron transfer at the level of the complex I, present both in the non-invaginated part of the membrane and in the chromatophores. At longer dark times, this illumination increases the reducing power of the cells leading to a significant reduction of the others reaction centers (RCs). From the observation that a significant proportion of RCs could be reduced by the preillumination without affecting the numbers of charge separation for the RCs, we conclude that there is no rapid thermodynamic equilibrium between the quinones present in the non-invaginated part of the membrane and those localized in the chromatophores. Under anaerobic conditions where the chromatophores quinone pool is fully reduced, we deduce, on the basis of flash-induced fluorescence kinetics, that the reduced RCs are exclusively reoxidized by the quinone generated at the Q o site of the cyt bc 1 complex. The supramolecular association between a dimeric RC-LHI complex and one cyt bc 1 complex allows the confinement of a quinone between the RC-LHI directly associated to the cyt bc1 complex.
Collapse
Affiliation(s)
- André Verméglio
- CEA-Cadarache, DSV-SBVME, Laboratoire de Bioénergétique Cellulaire, UMR 7265, CNRS-CEA-Aix-Marseille II, 13108, Saint Paul lez Durance Cedex, France,
| | | |
Collapse
|
4
|
de Rivoyre M, Ginet N, Bouyer P, Lavergne J. Excitation transfer connectivity in different purple bacteria: a theoretical and experimental study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1780-94. [PMID: 20655292 DOI: 10.1016/j.bbabio.2010.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 07/13/2010] [Accepted: 07/15/2010] [Indexed: 11/30/2022]
Abstract
Photosynthetic membranes accommodate densely packed light-harvesting complexes which absorb light and convey excitation to the reaction center (RC). The relationship between the fluorescence yield (phi) and the fraction (x) of closed RCs is informative about the probability for an excitation reaching a closed RC to be redirected to another RC. In this work, we have examined in this respect membranes from various bacteria and searched for a correlation with the arrangement of the light-harvesting complexes as known from atomic force or electron microscopies. A first part of the paper is devoted to a theoretical study analyzing the phi(x) relationship in various models: monomeric or dimeric RC-LH1 core complexes, with or without the peripheral LH2 complexes. We show that the simple "homogeneous" kinetic treatment used here agrees well with more detailed master equation calculations. We also discuss the agreement between information derived from the present technique and from singlet annihilation experiments. The experimental results show that the enhancement of the cross section of open RCs due to excitation transfer from closed units varies from 1.5 to 3 depending on species. The ratio of the core to core transfer rate (including the indirect pathway via LH2) to the rate of trapping in open units is in the range of 0.5 to 4. It is about 1 in Rhodobacter sphaeroides and does not increase significantly in mutants lacking LH2-despite the more numerous contacts between the dimeric core complexes expected in this case. The connectivity in this bacterium is due in good part to the fast transfer between the two partners of the dimeric (RC-LH1-PufX)(2) complex. The connectivity is however increased in the carotenoidless and LH2-less strain R26, which we ascribe to an anomalous LH1. A relatively high connectivity was found in Rhodospirillum photometricum, although not as high as predicted in the calculations of Fassioli et al. (2010). This illustrates a more general discrepancy between the measured efficiency of core to core excitation transfer and theoretical estimates. We argue that the limited core to core connectivity found in purple bacteria may reflect a trade-off between light-harvesting efficiency and the hindrance to quinone diffusion that would result from too tightly packed LH complexes.
Collapse
Affiliation(s)
- Matthieu de Rivoyre
- Laboratoire de Bioénergétique Cellulaire (CEA/DSV/IBEB; UMR 6191 CNRS/CEA) Aix-Marseille Université, Saint-Paul-lez-Durance, France
| | | | | | | |
Collapse
|
5
|
Lavergne J, Verméglio A, Joliot P. Functional Coupling Between Reaction Centers and Cytochrome bc 1 Complexes. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_26] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Scheuring S, Busselez J, Lévy D. Structure of the Dimeric PufX-containing Core Complex of Rhodobacter blasticus by in Situ Atomic Force Microscopy. J Biol Chem 2005; 280:1426-31. [PMID: 15522874 DOI: 10.1074/jbc.m411334200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied photosynthetic membranes of wild type Rhodobacter blasticus, a closely related strain to the well studied Rhodobacter sphaeroides, using atomic force microscopy. High-resolution atomic force microscopy topographs of both cytoplasmic and periplasmic surfaces of LH2 and RC-LH1-PufX (RC, reaction center) complexes were acquired in situ. The LH2 is a nonameric ring inserted into the membrane with the 9-fold axis perpendicular to the plane. The core complex is an S-shaped dimer composed of two RCs, each encircled by 13 LH1 alpha/beta-heterodimers, and two PufXs. The LH1 assembly is an open ellipse with a topography-free gap of approximately 25 A. The two PufXs, one of each core, are located at the dimer center. Based on our data, we propose a model of the core complex, which provides explanation for the PufX-induced dimerization of the Rhodobacter core complex. The QB site is located facing a approximately 25-A wide gap within LH1, explaining the PufX-favored quinone passage in and out of the core complex.
Collapse
Affiliation(s)
- Simon Scheuring
- Institut Curie, Unité Mixte de Recherche-CNRS 168 and Laboratoire de Recherche Correspondant-Commissariat à l'Energie Atomique 34V, 11 rue Pierre et Marie Curie, 75231 Paris 05, France.
| | | | | |
Collapse
|
7
|
Katona G, Andréasson U, Landau EM, Andréasson LE, Neutze R. Lipidic cubic phase crystal structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.35A resolution. J Mol Biol 2003; 331:681-92. [PMID: 12899837 DOI: 10.1016/s0022-2836(03)00751-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Well-ordered crystals of the bacterial photosynthetic reaction centre from Rhodobacter sphaeroides were grown from a lipidic cubic phase. Here, we report the type I crystal packing that results from this crystallisation medium, for which 3D crystals grow as stacked 2D crystals, and the reaction centre X-ray structure is refined to 2.35A resolution. In this crystal form, the location of the membrane bilayer could be assigned with confidence. A cardiolipin-binding site is found at the protein-protein interface within the membrane-spanning region, shedding light on the formation of crystal contacts within the membrane. A chloride-binding site was identified in the membrane-spanning region, which suggests a putative site for interaction with the light-harvesting complex I, the cytochrome bc(1) complex or PufX. Comparisons with the X-ray structures of this reaction centre deriving from detergent-based crystals are drawn, indicating that a slight compression occurs in this lipid-rich environment.
Collapse
Affiliation(s)
- Gergely Katona
- Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462, SE-405 30 Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
8
|
Yoshida M, Masuda S, Nagashima KV, Verméglio A, Shimada K, Matsuura K. In vitro and in vivo electron transfer to the triheme cytochrome subunit bound to the photosynthetic reaction center complex in the purple bacterium Rhodovulum sulfidophilum. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1506:23-30. [PMID: 11418094 DOI: 10.1016/s0005-2728(01)00177-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cytochrome subunit bound to the photosynthetic reaction center (RC) complex in Rhodovulum sulfidophilum lacks one heme-binding motif (CXXCH) out of four motifs found in other purple bacteria resulting in the absence of the most distal heme from the RC-core complex (S. Masuda et al., J. Biol. Chem. 274 (1999) 10795). Cytochrome c(2), which acts as the electron donor to the RC was purified, and its gene was cloned and sequenced. The redox midpoint potential of cytochrome c(2) was determined to be E(m)=357 mV. The photo-oxidation and re-reduction of purified cytochrome c(2) were observed in the presence of membrane preparations. Flash-induced photo-oxidation and re-reduction of the RC-bound cytochrome were also observed in intact cells. Despite the unusual nature of the RC-bound cytochrome subunit, the cyclic electron transfer system in Rdv. sulfidophilum was shown to be similar to those in other purple bacteria.
Collapse
Affiliation(s)
- M Yoshida
- Department of Biology, Tokyo Metropolitan University, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Wakeham MC, Sessions RB, Jones MR, Fyfe PK. Is there a conserved interaction between cardiolipin and the type II bacterial reaction center? Biophys J 2001; 80:1395-405. [PMID: 11222300 PMCID: PMC1301331 DOI: 10.1016/s0006-3495(01)76112-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In a recent publication, the structural details of an interaction between the Rhodobacter sphaeroides reaction center and the anionic phospholipid diphosphatidyl glycerol (cardiolipin) were described (K. E. McAuley, P. K. Fyfe, J. P. Ridge, N. W. Isaacs, R. J. Cogdell, and M. R. Jones, 1999, Proc. Natl. Acad. Sci. U.S.A. 96:14706-14711). This was the first crystallographic description of an interaction between this biologically important lipid and an integral membrane protein and was also the first piece of evidence that the reaction center has a specific interaction with cardiolipin. We have examined the extent to which the residues that interact with the cardiolipin are conserved in other species of photosynthetic bacteria with this type of reaction center and discuss the possibility that this cardiolipin binding site is a conserved feature of these reaction centers. We look at how sequence variations that would affect the shape of the cardiolipin binding site might affect the protein-cardiolipin interaction, by modeling the binding of cardiolipin to the reaction center from Rhodopseudomonas viridis.
Collapse
Affiliation(s)
- M C Wakeham
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | | | | | | |
Collapse
|
10
|
Affiliation(s)
- P A Loach
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
11
|
Affiliation(s)
- I Vermeglio
- CEA-Cadarache-DSV, 13108 Saint Paul-lez-Durance Cedex, France
| | | |
Collapse
|
12
|
Abstract
Functional and ultrastructural studies have indicated that the components of the photosynthetic apparatus of Rhodobacter sphaeroides are highly organized. This organization favors rapid electron transfer that is unimpeded by reactant diffusion. The light-harvesting complexes only partially surround the photochemical reaction center, which ensures an efficient shuttling of quinones between the photochemical reaction center and the bc1 complex.
Collapse
Affiliation(s)
- A Verméglio
- CEA/Cadarache-DSV, Département d'Ecophysiologie Végétale et Microbiologie, Laboratoire de Bioénergétique Cellulaire, 13108 Saint Paul lez Durance Cedex, France.
| | | |
Collapse
|
13
|
Photo-induced cyclic electron transfer operates in frozen cells of Rhodobacter sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1997. [DOI: 10.1016/s0005-2728(96)00114-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Joliot P, Verméglio A, Joliot A. Supramolecular organization of the photosynthetic chain in chromatophores and cells of Rhodobacter sphaeroides. PHOTOSYNTHESIS RESEARCH 1996; 48:291-299. [PMID: 24271310 DOI: 10.1007/bf00041020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/1995] [Accepted: 02/05/1996] [Indexed: 06/02/2023]
Abstract
Flash-induced kinetics of the membrane potential increase related to electron transfer within the cytochrome (cyt) b/c1 complex (Phase III) and that of cyt c1+c2 reduction have been measured as a function of myxothiazol concentration in isolated chromatophores and whole cells of Rhodobacter sphaeroides. Upon addition of nonsaturating concentrations of myxothiazol, kinetics of Phase III display two phases, Phase IIIa and Phase IIIb. The amplitude of Phase IIIa, completed in about 10 ms, is proportional to the fraction of non-inhibited cyt b/c1 complexes, while its half-time is independent of the myxothiazol concentration. A fast cyt c1+c2 reduction phase is correlated to Phase IIIa. These experiments demonstrate that, in a range of time of several ms, diffusion of cyt c2 is restricted to domains formed by a supercomplex including two reaction centers (RCs) and a single cyt b/c1 complex, as proposed by Joliot et al. (Biochim Biophys Acta 975: 336-345, 1989). Phase IIIb, completed in about 100 ms, shows that positive charges or inhibitor molecules are exchanged between supercomplexes in this range of time. These exchanges occur within domains including 2 to 3 supercomplexes, i.e. in membrane domains smaller than a single chromatophore. These conclusions apply to both isolated chromatophores and whole cells.
Collapse
Affiliation(s)
- P Joliot
- Institut de Biologie Physico-Chimique, CNRS (UPR 9072), 13, rue Pierre-et-Marie Curie, 75005, Paris, France
| | | | | |
Collapse
|
15
|
Hellingwerf KJ, Crielaard W, Hoff WD, Matthijs HC, Mur LR, van Rotterdam BJ. Photobiology of bacteria. Antonie Van Leeuwenhoek 1994; 65:331-47. [PMID: 7832590 DOI: 10.1007/bf00872217] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The field of photobiology is concerned with the interactions between light and living matter. For Bacteria this interaction serves three recognisable physiological functions: provision of energy, protection against excess radiation and signalling (for motility and gene expression). The chemical structure of the primary light-absorbing components in biology (the chromophores of photoactive proteins) is surprisingly simple: tetrapyrroles, polyenes and derivatised aromats are the most abundant ones. The same is true for the photochemistry that is catalysed by these chromophores: this is limited to light-induced exciton- or electron-transfer and photoisomerization. The apoproteins surrounding the chromophores provide them with the required specificity to function in various aspects of photosynthesis, photorepair, photoprotection and photosignalling. Particularly in photosynthesis several of these processes have been resolved in great detail, for others at best only a physiological description can be given. In this contribution we discuss selected examples from various parts of the field of photobiology of Bacteria. Most examples have been taken from the purple bacteria and the cyanobacteria, with special emphasis on recently characterised signalling photoreceptors in Ectothiorhodospira halophila and in Fremyella diplosiphon.
Collapse
Affiliation(s)
- K J Hellingwerf
- Department of Microbiology, Amsterdam Research Institute of Substances in the Environment, The Netherlands
| | | | | | | | | | | |
Collapse
|
16
|
Sabaty M, Jappé J, Olive J, Verméglio A. Organization of electron transfer components in Rhodobacter sphaeroides forma sp. denitrificans whole cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1994. [DOI: 10.1016/0005-2728(94)90005-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|