1
|
Abbrescia A, Martino PL, Panelli D, Sardanelli AM, Papa S, Alifano P, Palese LL, Gaballo A. The respiratory chains of four strains of the alkaliphilic Bacillus clausii. FEBS Open Bio 2014; 4:714-21. [PMID: 25161879 PMCID: PMC4141192 DOI: 10.1016/j.fob.2014.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 07/29/2014] [Accepted: 07/29/2014] [Indexed: 11/30/2022] Open
Abstract
It is important to understand how alkaliphilic prokaryotes thrive at high pH. An interesting issue is their ability to cope with bioenergetics at high pH. We show that four genetically similar strains adopt different biochemical behaviors. Two of the strains show a functional redundancy of the terminal part of the respiratory chain. Biochemical data correlate with the expression of cytochrome c oxidase and quinol oxidase genes (heme-copper types).
A comparative analysis of terminal respiratory enzymes has been performed on four strains of Bacillus clausii used for preparation of a European probiotic. These four strains originated most probably from a common ancestor through early selection of stable clones for industrial propagation. They exhibit a low level of intra-specific diversity and a high degree of genomic conservation, making them an attractive model to study the different bioenergetics behaviors of alkaliphilic bacilli. The analysis of the different bioenergetics responses has been carried out revealing striking differences among the strains. Two out of the four strains have shown a functional redundancy of the terminal part of the respiratory chain. The biochemical data correlate with the expression level of the mRNA of cytochrome c oxidase and quinol oxidase genes (heme-copper type). The consequences of these different bioenergetics behaviors are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - S Papa
- Institute of Biomembranes and Bioenergetics (IBBE), Italian Research Council (CNR), Bari, Italy
| | - P Alifano
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Universita' del Salento, Lecce, Italy
| | | | - A Gaballo
- Nanoscience Institute-CNR, U.O.S. NNL, Lecce, Italy
| |
Collapse
|
2
|
Kolaj-Robin O, O'Kane SR, Nitschke W, Léger C, Baymann F, Soulimane T. Biochemical and biophysical characterization of succinate: quinone reductase from Thermus thermophilus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:68-79. [PMID: 20951673 DOI: 10.1016/j.bbabio.2010.10.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/05/2010] [Accepted: 10/06/2010] [Indexed: 11/30/2022]
Abstract
Enzymes serving as respiratory complex II belong to the succinate:quinone oxidoreductases superfamily that comprises succinate:quinone reductases (SQRs) and quinol:fumarate reductases. The SQR from the extreme thermophile Thermus thermophilus has been isolated, identified and purified to homogeneity. It consists of four polypeptides with apparent molecular masses of 64, 27, 14 and 15kDa, corresponding to SdhA (flavoprotein), SdhB (iron-sulfur protein), SdhC and SdhD (membrane anchor proteins), respectively. The existence of [2Fe-2S], [4Fe-4S] and [3Fe-4S] iron-sulfur clusters within the purified protein was confirmed by electron paramagnetic resonance spectroscopy which also revealed a previously unnoticed influence of the substrate on the signal corresponding to the [2Fe-2S] cluster. The enzyme contains two heme b cofactors of reduction midpoint potentials of -20mV and -160mV for b(H) and b(L), respectively. Circular dichroism and blue-native polyacrylamide gel electrophoresis revealed that the enzyme forms a trimer with a predominantly helical fold. The optimum temperature for succinate dehydrogenase activity is 70°C, which is in agreement with the optimum growth temperature of T. thermophilus. Inhibition studies confirmed sensitivity of the enzyme to the classical inhibitors of the active site, as there are sodium malonate, sodium diethyl oxaloacetate and 3-nitropropionic acid. Activity measurements in the presence of the semiquinone analog, nonyl-4-hydroxyquinoline-N-oxide (NQNO) showed that the membrane part of the enzyme is functionally connected to the active site. Steady-state kinetic measurements showed that the enzyme displays standard Michaelis-Menten kinetics at a low temperature (30°C) with a K(M) for succinate of 0.21mM but exhibits deviation from it at a higher temperature (70°C). This is the first example of complex II with such a kinetic behavior suggesting positive cooperativity with k' of 0.39mM and Hill coefficient of 2.105. While the crystal structures of several SQORs are already available, no crystal structure of type A SQOR has been elucidated to date. Here we present for the first time a detailed biophysical and biochemical study of type A SQOR-a significant step towards understanding its structure-function relationship.
Collapse
Affiliation(s)
- Olga Kolaj-Robin
- Chemical and Environmental Sciences Department and Materials & Surface Science Institute, University of Limerick, Limerick, Ireland
| | | | | | | | | | | |
Collapse
|
3
|
Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA. Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 2009; 55:1-79, 317. [PMID: 19573695 DOI: 10.1016/s0065-2911(09)05501-5] [Citation(s) in RCA: 309] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Of all the molecular determinants for growth, the hydronium and hydroxide ions are found naturally in the widest concentration range, from acid mine drainage below pH 0 to soda lakes above pH 13. Most bacteria and archaea have mechanisms that maintain their internal, cytoplasmic pH within a narrower range than the pH outside the cell, termed "pH homeostasis." Some mechanisms of pH homeostasis are specific to particular species or groups of microorganisms while some common principles apply across the pH spectrum. The measurement of internal pH of microbes presents challenges, which are addressed by a range of techniques under varying growth conditions. This review compares and contrasts cytoplasmic pH homeostasis in acidophilic, neutralophilic, and alkaliphilic bacteria and archaea under conditions of growth, non-growth survival, and biofilms. We present diverse mechanisms of pH homeostasis including cell buffering, adaptations of membrane structure, active ion transport, and metabolic consumption of acids and bases.
Collapse
|
4
|
García LM, Contreras-Zentella ML, Jaramillo R, Benito-Mercadé MC, Mendoza-Hernández G, del Arenal IP, Membrillo-Hernández J, Escamilla JE. The succinate:menaquinone reductase of Bacillus cereus: characterization of the membrane-bound and purified enzyme. Can J Microbiol 2008; 54:456-66. [PMID: 18535631 DOI: 10.1139/w08-037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Utilization of external succinate by Bacillus cereus and the properties of the purified succinate:menaquinone-7 reductase (SQR) were studied. Bacillus cereus cells showed a poor ability for the uptake of and respiratory utilization of exogenous succinate, thus suggesting that B. cereus lacks a specific succinate uptake system. Indeed, the genes coding for a succinate-fumarate transport system were missing from the genome database of B. cereus. Kinetic studies of membranes indicated that the reduction of menaquinone-7 is the rate-limiting step in succinate respiration. In accordance with its molecular characteristics, the purified SQR of B. cereus belongs to the type-B group of SQR enzymes, consisting of a 65-kDa flavoprotein (SdhA), a 29-kDa iron-sulphur protein (SdhB), and a 19-kDa subunit containing 2 b-type cytochromes (SdhC). In agreement with this, we could identify the 4 conserved histidines in the SdhC subunit predicted by the B. cereus genome database. Succinate reduced half of the cytochrome b content. Redox titrations of SQR-cytochrome b-557 detected 2 components with apparent midpoint potential values at pH 7.6 of 79 and -68 mV, respectively; the components were not spectrally distinguishable by their maximal absorption bands as those of Bacillus subtilis. The physiological properties and genome database analyses of B. cereus are consistent with the cereus group ancestor being an opportunistic pathogen.
Collapse
Affiliation(s)
- L M García
- Departamento de Bioquimica, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Mexico, DF Mexico
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Yumoto I. Bioenergetics of alkaliphilic Bacillus spp. J Biosci Bioeng 2005; 93:342-53. [PMID: 16233213 DOI: 10.1016/s1389-1723(02)80066-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2002] [Accepted: 02/28/2002] [Indexed: 10/27/2022]
Abstract
Alkaliphilic microorganisms are widely distributed in nature. Among them, several aerobic alkaliphilic Bacillus spp. have been studied in terms of their mechanisms of physiological adaptation under an extremely alkaline condition. On the basis of chemiosmotic theories, neutrophiles produce H+ electrochemical potential (deltap), which is the sum of transmembrane pH gradient (deltapH) (alkaline, inside) and membrane potential (deltapsi) (negative, inside), for active transport of solutes, motility, and ATP synthesis. In the case of alkaliphiles, it seems that Mitchell's chemiosmotic theories alone cannot explain clearly their positive H+ electrochemical potential (deltap) across the membrane because these bacteria exhibit deltaph in a direction opposite to that in neutrophiles, which seems to be causing extensively negative to produce energy, theoretically. Nevertheless, it is reported that ATP synthesis is more rapid at high alkaline pH than at near neutral pH in the facultative alkaliphile Bacillus pseudofirmus OF4. The respiratory system of alkaliphilic microorganisms might have an important role in compensating the reversed transmembrane pH gradient by means of ATP synthesis. To understand the function of the respiratory system in alkaliphiles, several respiratory components in alkaliphilic Bacillus spp. were isolated and characterized. In these studies, respiratory components of alkaliphiles exhibiting several unique characteristics are identified. These characteristics may have an important role in obtaining energy in alkaline environments. Information obtained from bioenergetics studies of alkaliphiles will reveal new important findings on general energy coupling phenomena.
Collapse
Affiliation(s)
- Isao Yumoto
- Research Institute of Biological Resources, National Institute of Advanced Industrial Science and Technology, Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan.
| |
Collapse
|
6
|
Dimroth P, Cook GM. Bacterial Na+- or H+-coupled ATP Synthases Operating at Low Electrochemical Potential. Adv Microb Physiol 2004; 49:175-218. [PMID: 15518831 DOI: 10.1016/s0065-2911(04)49004-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In certain strictly anaerobic bacteria, the energy for growth is derived entirely from a decarboxylation reaction. A prominent example is Propionigenium modestum, which converts the free energy of the decarboxylation of (S)-methylmalonyl-CoA to propionyl-CoA (DeltaG degrees =-20.6 kJ/mol) into an electrochemical Na(+) ion gradient across the membrane. This energy source is used as a driving force for ATP synthesis by a Na(+)-translocating F(1)F(0) ATP synthase. According to bioenergetic considerations, approximately four decarboxylation events are necessary to support the synthesis of one ATP. This unique feature of using Na(+) instead of H(+) as the coupling ion has made this ATP synthase the paradigm to study the ion pathway across the membrane and its relationship to rotational catalysis. The membrane potential (Deltapsi) is the key driving force to convert ion translocation through the F(0) motor components into torque. The resulting rotation elicits conformational changes at the catalytic sites of the peripheral F(1) domain which are instrumental for ATP synthesis. Alkaliphilic bacteria also face the challenge of synthesizing ATP at a low electrochemical potential, but for entirely different reasons. Here, the low potential is not the result of insufficient energy input from substrate degradation, but of an inverse pH gradient. This is a consequence of the high environmental pH where these bacteria grow and the necessity to keep the intracellular pH in the neutral range. In spite of this unfavorable bioenergetic condition, ATP synthesis in alkaliphilic bacteria is coupled to the proton motive force (DeltamuH(+)) and not to the much higher sodium motive force (DeltamuNa(+)). A peculiar feature of the ATP synthases of alkaliphiles is the specific inhibition of their ATP hydrolysis activity. This inhibition appears to be an essential strategy for survival at high external pH: if the enzyme were to operate as an ATPase, protons would be pumped outwards to counteract the low DeltamuH(+), thus wasting valuable ATP and compromising acidification of the cytoplasm at alkaline pH.
Collapse
Affiliation(s)
- Peter Dimroth
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, ETH-Zentrum, Schmelzbergstrasse 7, CH-8092 Zürich, Switzerland
| | | |
Collapse
|
7
|
Fernandes AS, Pereira MM, Teixeira M. The succinate dehydrogenase from the thermohalophilic bacterium Rhodothermus marinus: redox-Bohr effect on heme bL. J Bioenerg Biomembr 2001; 33:343-52. [PMID: 11710809 DOI: 10.1023/a:1010663424846] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The succinate dehydrogenase from the thermohalophilic bacterium Rhodothermus marinus is a member of the succinate:menaquinone oxidoreductases family. It is constituted by three subunits with apparent molecular masses of 70, 32, and 18 kDa. The optimum temperature for succinate dehydrogenase activity is 80 degrees C, higher than the optimum growth temperature of R. marinus, 65 degrees C. The enzyme shows a high affinity for both succinate (Km = 0.165 mM) and fumarate (Km = 0.10 mM). It contains the canonical iron-sulfur centers S1, S2, and S3, as well as two B-type hemes. In contrast to other succinate dehydrogenases, the S3 center has an unusually high reduction potential of +130 mV and is present in two different conformations, one of which presents an unusual EPR signal with g values at 2.035, 2.009, and 2.001. The apparent midpoint reduction potentials of the hemes, +75 and -65 mV at pH 7.5, are also higher than those reported for other enzymes. The heme with the lower potential (heme bL) presents a considerable dependence of the reduction potential with pH (redox-Bohr effect), having a pKa(OX) = 6.5 and a pKa(red) = 8.7. This behavior is consistent with the proposal that in these enzymes menaquinone reduction occurs close to heme bL, near to the periplasmic side of the membrane, and involving dissipation of the proton transmembrane gradient.
Collapse
Affiliation(s)
- A S Fernandes
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | |
Collapse
|
8
|
Azarkina N, Siletsky S, Borisov V, von Wachenfeldt C, Hederstedt L, Konstantinov AA. A cytochrome bb'-type quinol oxidase in Bacillus subtilis strain 168. J Biol Chem 1999; 274:32810-7. [PMID: 10551842 DOI: 10.1074/jbc.274.46.32810] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aerobic respiratory system of Bacillus subtilis 168 is known to contain three terminal oxidases: cytochrome caa(3), which is a cytochrome c oxidase, and cytochrome aa(3) and bd, which are quinol oxidases. The presence of a possible fourth oxidase in the bacterium was investigated using a constructed mutant, LUH27, that lacks the aa(3) and caa(3) terminal oxidases and is also deficient in succinate:menaquinone oxidoreductase. The cytochrome bd content of LUH27 can be varied by using different growth conditions. LUH27 membranes virtually devoid of cytochrome bd respired with NADH or exogenous quinol as actively as preparations containing 0.4 nmol of cytochrome bd/mg of protein but were more sensitive to cyanide and aurachin D. The reduced minus oxidized difference spectra of the bd-deficient membranes as well as absorption changes induced by CO and cyanide indicated the presence of a "cytochrome o"-like component; however, the membranes did not contain heme O. The results provide strong evidence for the presence of a terminal oxidase of the bb' type in B. subtilis. The enzyme does not pump protons and combines with CO much faster than typical heme-copper oxidases; in these respects, it resembles a cytochrome bd rather than members of the heme-copper oxidase superfamily. The genome sequence of B. subtilis 168 contains gene clusters for four respiratory oxidases. Two of these clusters, cta and qox, are deleted in LUH27. The remaining two, cydAB and ythAB, encode the identified cytochrome bd and a putative second cytochrome bd, respectively. Deletion of ythAB in strain LUH27 or the presence of the yth genes on plasmid did not affect the expression of the bb' oxidase. It is concluded that the novel bb'-type oxidase probably is cytochrome bd encoded by the cyd locus but with heme D being substituted by high spin heme B at the oxygen reactive site, i.e. cytochrome b(558)b(595)b'.
Collapse
Affiliation(s)
- N Azarkina
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russia
| | | | | | | | | | | |
Collapse
|
9
|
Krulwich TA, Ito M, Gilmour R, Hicks DB, Guffanti AA. Energetics of alkaliphilic Bacillus species: physiology and molecules. Adv Microb Physiol 1999; 40:401-38. [PMID: 9889983 DOI: 10.1016/s0065-2911(08)60136-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The challenge of maintaining a cytoplasmic pH that is much lower than the external pH is central to the adaptation of extremely alkaliphilic Bacillus species to growth at pH values above 10. The success with which this challenge is met may set the upper limit of pH for growth in these bacteria, all of which also exhibit a low content of basic amino acids in proteins or protein segments that are exposed to the outside bulk phase liquid. The requirement for an active Na(+)-dependent cycle and possible roles of acidic cell wall components in alkaliphile pH homeostasis are reviewed. The gene loci that encode Na+/H+ antiporters that function in the active cycle are described and compared with the less Na(+)-specific homologues thus far found in non-alkaliphilic Gram-positive prokaryotes. Alkaliphilic Bacillus species carry out oxidative phosphorylation using an exclusively H(+)-coupled ATPase (synthase). Nonetheless, ATP synthesis is more rapid and reaches a higher phosphorylation potential at highly alkaline pH than at near-neutral pH even though the bulk electrochemical proton gradient across the coupling membrane is lower at highly alkaline pH. It is possible that some of the protons extruded by the respiratory chain are conveyed to the ATP synthase without first equilibrating with the external bulk phase. Mechanisms that might apply to oxidative phosphorylation in this type of extensively studied alkaliphile are reviewed, and note is made of the possibility of different kinds of solutions to the problem that may be found in new alkaliphilic bacteria that are yet to be isolated or characterized.
Collapse
Affiliation(s)
- T A Krulwich
- Department of Biochemistry, Mount Sinai School of Medicine of CUNY, New York, USA
| | | | | | | | | |
Collapse
|
10
|
Hägerhäll C. Succinate: quinone oxidoreductases. Variations on a conserved theme. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1320:107-41. [PMID: 9210286 DOI: 10.1016/s0005-2728(97)00019-4] [Citation(s) in RCA: 317] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- C Hägerhäll
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia 19104, USA.
| |
Collapse
|
11
|
Gilmour R, Krulwich TA. Construction and characterization of a mutant of alkaliphilic Bacillus firmus OF4 with a disrupted cta operon and purification of a novel cytochrome bd. J Bacteriol 1997; 179:863-70. [PMID: 9006044 PMCID: PMC178771 DOI: 10.1128/jb.179.3.863-870.1997] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The caa3-type terminal oxidase of Bacillus firmus OF4 has been proposed to play an important role in the growth and bioenergetics of this alkaliphile (A. A. Guffanti and T. A. Krulwich, J. Biol. Chem. 267:9580-9588, 1992). A mutant strain was generated in which the cta operon encoding the oxidase was disrupted by insertion of a spectinomycin resistance cassette. The mutant was unable to oxidize ascorbate in the presence of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). Absorption spectra of membranes confirmed the loss of the enzyme and indicated the presence of a cytochrome bd-type terminal oxidase. The mutant could grow on glucose but was unable to grow on malate or other nonfermentative carbon sources, despite the presence of the cytochrome bd. The cytochrome bd was purified from the mutant. The enzyme consisted of two subunits and, with menadiol as substrate, consumed oxygen with a specific activity of 12 micromol of O2 x min(-1) x mg(-1). In contrast to both cytochromes bd of Escherichia coli, the enzyme did not utilize TMPD as an electron source. A number of additional features, including subunit size and spectral properties, distinguish this cytochrome bd from its counterparts in E. coli and Azotobacter vinelandii.
Collapse
Affiliation(s)
- R Gilmour
- Department of Biochemistry, Mount Sinai School of Medicine of CUNY, New York, New York 10029, USA
| | | |
Collapse
|