1
|
Seib KL, Haag AF, Oriente F, Fantappiè L, Borghi S, Semchenko EA, Schulz BL, Ferlicca F, Taddei AR, Giuliani MM, Pizza M, Delany I. The meningococcal vaccine antigen GNA2091 is an analogue of YraP and plays key roles in outer membrane stability and virulence. FASEB J 2019; 33:12324-12335. [DOI: 10.1096/fj.201900669r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kate L. Seib
- Institute for GlycomicsGriffith UniversityGold CoastQueenslandAustralia
| | | | | | | | | | | | - Benjamin L. Schulz
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | | | - Anna Rita Taddei
- Interdepartmental Centre of Electron Microscopy (CIME)Tuscia UniversityTusciaItaly
| | | | | | | |
Collapse
|
2
|
Kanti De S, Kanwa N, Ahamed M, Chakraborty A. Spectroscopic evidence for hydration and dehydration of lipid bilayers upon interaction with metal ions: a new physical insight. Phys Chem Chem Phys 2018; 20:14796-14807. [DOI: 10.1039/c8cp01774c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this manuscript, we investigate the interactions of different metal ions with zwitterionic phospholipid bilayers of different chain lengths using the well-known membrane probe PRODAN and steady state and time resolved fluorescence spectroscopy.
Collapse
Affiliation(s)
- Soumya Kanti De
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore
- India
| | - Nishu Kanwa
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore
- India
| | - Mirajuddin Ahamed
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore
- India
| | - Anjan Chakraborty
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore
- India
| |
Collapse
|
3
|
Kerek E, Hassanin M, Zhang W, Prenner EJ. Preferential binding of Inorganic Mercury to specific lipid classes and its competition with Cadmium. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1211-1221. [PMID: 28389203 DOI: 10.1016/j.bbamem.2017.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/10/2017] [Accepted: 03/31/2017] [Indexed: 02/07/2023]
Abstract
Upon uptake of Hg and Cd into living systems, possible targets for metal induced toxicity include the membranes surrounding nervous, cardiovascular and renal cells. To further our understanding of the interactions of Hg and Cd with different lipid structures under physiologically relevant chloride and pH conditions (100 mM NaCl pH 7.4), we used fluorescence spectroscopy and dynamic light scattering to monitor changes in membrane fluidity and phase transition and liposome size. The metal effects were studied on zwitterionic, cationic and anionic lipids to elucidate electrostatically driven metal-lipid interactions. The effect of Hg-catalyzed cleavage of the vinyl ether bond in plasmalogens on these aforementioned properties was studied in addition to a thermodynamic characterization of this interaction by Isothermal Titration Calorimetry. The negatively charged Hg-chloride complexes formed under our experimental conditions induce membrane rigidity in membranes containing cationic lipids and plasmalogens while this effect is heavily reduced and entirely absent with zwitterionic and anionic lipids respectively. The KD for the interaction of Hg with plasmalogen containing liposomes was between 4-30 μM. Furthermore, the presence of Cd affected the interaction of Hg with plasmalogen when negatively charged PS was also present. In this case, even the order of the metal addition was important.
Collapse
Affiliation(s)
- Evan Kerek
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Mohamed Hassanin
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Wenzhou Zhang
- Department of Chemistry, McGill University, Montréal, Québec, H3A 0B8, Canada
| | - Elmar J Prenner
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
4
|
Kerek EM, Prenner EJ. Inorganic cadmium affects the fluidity and size of phospholipid based liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:3169-3181. [DOI: 10.1016/j.bbamem.2016.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/21/2016] [Accepted: 10/06/2016] [Indexed: 12/13/2022]
|
5
|
Literature Alerts. J Microencapsul 2008. [DOI: 10.3109/02652048509038529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Lichtenberg D, Barenholz Y. Liposomes: preparation, characterization, and preservation. METHODS OF BIOCHEMICAL ANALYSIS 2006; 33:337-462. [PMID: 3282152 DOI: 10.1002/9780470110546.ch7] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Chapter 3: Interactions of Al and Related Metals with Membrane Phospholipids: Consequences on Membrane Physical Properties. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1554-4516(06)04003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
|
8
|
Binder H, Zschörnig O. The effect of metal cations on the phase behavior and hydration characteristics of phospholipid membranes. Chem Phys Lipids 2002; 115:39-61. [PMID: 12047897 DOI: 10.1016/s0009-3084(02)00005-1] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To characterize the specificity of ion binding to phospholipids in terms of headgroup structure, hydration and lyotropic phase behavior we studied 1-palmitoyl-2-oleoyl-phosphatidylcholine as a function of relative humidity (RH) at 25 degrees C in the presence and absence of Li+, Na+, K+, Be2+, Mg2+, Ca2+, Sr2+, Ba2+, Zn2+ and Cu2+ ions by means of infrared (IR) spectroscopy. All divalent cations and Li+ shift the gel-to-liquid crystalline phase transition towards bigger RH values indicating stabilization of the gel state. The observed shift correlates in a linearly fashion with the electrostatic solvation free energy for most of the ions in water that in turn, is inversely related to the ionic radius. This interesting result was interpreted in terms of the excess chemical potential of mixing of hydrated ions and lipids. Calcium, zinc and partially lithium, cause a positive deviation from the linear relationship. IR spectral analysis shows that the carbonyl groups become more accessible to the water in the presence of Mg2+, Ca2+, Sr2+ and Ba2+ probably because of their involvement into the hydration shell of the ions. In contrast, Be2+, Zn2+ and Cu2+ dehydrate the carbonyl groups at small and medium RH. The ability of the lipid to take up water is distinctly reduced in the presence of Zn2+ and, partially, of Cu2+ meaning that the headgroups have become less hydrophilic. The binding mode of Be2+ to lipid headgroups involves hydrolyzed water. Polarized IR spectra show that complex formation of the phosphate groups with divalent ions gives rise to conformational changes and immobilization of the headgroups. The results are discussed in terms of the lyotropic Hofmeister series and of fusogenic activity of the ionic species.
Collapse
Affiliation(s)
- Hans Binder
- Department of Medicine, Institute of Medical Physics and Biophysics, University of Leipzig, Liebigstr. 27, Leipzig, Germany.
| | | |
Collapse
|
9
|
Abstract
To characterize the specificity of zinc binding to phospholipid membranes in terms of headgroup structure, hydration and phase behavior we studied the zwitterionic lipid 1-palmitoyl-2-oleoyl-phosphatidylcholine as a function of hydration at 30 degreesC in the presence and absence of ZnCl2. Zinc forms a 2:1-1:1 complex with the lipid, and in particular with the negatively charged phosphate groups. Zn2(+)-bridges between neighboring lipid molecules stabilize the gel phase of the lipid relative to the liquid-crystalline state. Upon Zn2+ binding the C-O-P-O-C- backbone of the lipid headgroup changes from a gauche/gauche into the trans/trans conformation and it loses roughly 50% of the hydration shell. The ability of the Zn2(+)-bound phosphate groups to take up water is distinctly reduced, meaning that the headgroups have become less hydrophilic. The energetic cost (on the scale of Gibbs free energy) for completely dehydrating the lipid headgroups is decreased by approximately 10 kJ/mole in the presence of Zn2+. The interaction of phospholipid headgroups with Zn2+ is conveniently described by a hydrated zinc-phosphate complex the key energy contribution of which is more covalent than electrostatic in nature. Dehydration of phospholipid headgroups due to complexation with zinc cations is suggested to increase fusogenic potency of lipid membranes. Zinc appears to be one of the most potent divalent cation in inducing membrane fusion.
Collapse
Affiliation(s)
- H Binder
- University of Leipzig, Institute of Medical Physics and Biophysics, Germany.
| | | | | | | |
Collapse
|
10
|
Siegmund A, Grant A, Angeletti C, Malone L, Nichols JW, Rudolph HK. Loss of Drs2p does not abolish transfer of fluorescence-labeled phospholipids across the plasma membrane of Saccharomyces cerevisiae. J Biol Chem 1998; 273:34399-405. [PMID: 9852106 DOI: 10.1074/jbc.273.51.34399] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast DRS2 gene, which is required for growth at 23 degreesC or below, encodes a member of a P-type ATPase subgroup reported to transport aminophospholipids between the leaflets of the plasma membrane. Here, we evaluated the potential role of Drs2p in phospholipid transport. When examined by fluorescence microscopy, a drs2 null mutant showed no defect in the uptake or distribution of fluorescent-labeled 1-palmitoyl-2[6-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl (NBD))aminocaproyl]phosphatidylserine) or 1-myristoyl-2[6-NBD-aminocaproyl]phosphatidylethanolamine. Quantification of the amount of cell-associated NBD fluorescence using flow cytometry indicated a significant decrease in the absence of Drs2p, but this decrease was not restricted to the aminophospholipids (phosphatidylserine and phosphatidylethanolamine) and was dependent on culture conditions. Furthermore, the absence of Drs2p had no effect on the amount of endogenous PE exposed to the outer leaflet of the plasma membrane as detected by labeling with trinitrobenzene sulfonic acid. The steady state pool of Drs2p, which was shown to reside predominantly in the plasma membrane, increased upon shift to low temperature or exposure to various divalent cations (Mn2+, Co2+, Ni2+, and Zn2+ but not Ca2+ or Mg2+), conditions that also inhibited the growth of a drs2 null mutant. The data presented here call into question the identification of Drs2p as the exclusive or major aminophospholipid translocase in yeast plasma membranes (Tang, X., Halleck, M. S., Schlegel, R. A., and Williamson, P. (1996) Science 272, 1495-1497).
Collapse
Affiliation(s)
- A Siegmund
- Institut für Biochemie der Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Song LY, Ahkong QF, Baldwin JM, O'Reilly R, Lucy JA. Divalent cations, phospholipid asymmetry and osmotic swelling in electrically-induced lysis, cell fusion and giant cell formation with human erythrocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1148:30-8. [PMID: 8499467 DOI: 10.1016/0005-2736(93)90157-u] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have previously reported that acidic phospholipids are exposed at the surface of human erythrocytes when the cells are subjected to electrical breakdown. It has now been shown that the prothrombinase assay, which was used previously for the determination of acidic phospholipids, is specific for phosphatidylserine under the conditions of our experiments. In the light of this finding, we have investigated and characterised factors that govern cell lysis, cell fusion, and the formation of giant cells induced by electrical breakdown with human erythrocytes in media of low ionic strength. Divalent cations (1.1 mM) protected the cells against haemolysis, in the order Mn2+ > Ca2+ > Ba2+ > Mg2+ >> Zn2+, whereas about 99% of the cells lysed immediately on breakdown in the presence of Na+ or K+ (2.1 mM), or Al3+ (0.95 mM). The lengths of pearl chains of fused erythrocytes formed was similarly greatest with Mn2+ and decreased progressively with Ba2+, Zn2+, Ca2+ and Mg2+. No cell fusion occurred with Na+, K+, or Al3+. It is suggested that interactions with phosphatidylserine, which is exposed at the cell surface by electrical breakdown, may enable Mn2+, Ba2+ and Ca2+ ions to inhibit cell lysis (via membrane resealing) and facilitate cell fusion. Following electrically-induced cell fusion, erythrocytes round-up into giant cells. It has previously been proposed that Ca2+ ions accelerate the rounding-up process. However, data are presented which show that, as with erythrocytes treated with Sendai virus, the formation of rounded, giant cells following cell fusion depends on the osmotic swelling properties of permeabilised erythrocytes. Osmotic swelling may also have induced any hemi-fused cells present to fuse completely. Zn2+ ions anomalously enabled erythrocytes to round-up very rapidly into giant cells following electrical breakdown. This phenomenon may result from an interaction of Zn2+ ions with cysteine groups in membrane proteins, which decreases the immediate loss of ions that occurs when erythrocytes are subjected to electrical breakdown in low-ionic-strength media.
Collapse
Affiliation(s)
- L Y Song
- Department of Biochemistry and Chemistry, Royal Free Hospital, School of Medicine, University of London, UK
| | | | | | | | | |
Collapse
|
12
|
|
13
|
Dupuy C, Virion A, De Sandro V, Ohayon R, Kaniewski J, Pommier J, Dème D. Activation of the NADPH-dependent H2O2-generating system in pig thyroid particulate fraction by limited proteolysis and Zn2+ treatment. Biochem J 1992; 283 ( Pt 2):591-5. [PMID: 1315520 PMCID: PMC1131076 DOI: 10.1042/bj2830591] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The NADPH-dependent H2O2-generating system in a pig thyroid particulate fraction requires micromolar concentrations of Ca2+ for activity. The H2O2 generator could be Ca(2+)-desensitized (i.e. made fully active in the absence of Ca2+) by limited proteolysis with alpha-chymotrypsin or by treatment with ZnCl2. The Zn2+ effect was temperature- and dose-dependent with an apparent half-maximum concentration of 0.15 mM at 40 degrees C. Ca2+ desensitization was not reversed by adding the Zn2+ chelators, 1,10-phenanthroline and EGTA, but about one-third of the Ca(2+)-sensitivity was recovered after addition of 10 mM-dithiothreitol. The proteolysed enzyme and the Zn(2+)-treated enzyme had different Km values for NADPH. The Zn2+ effect did not seem to involve proteolysis or membrane fusion. These results indicate that Ca2+ regulation occurs via an autoinhibitory domain or inhibitory protein component of the H2O2-generator system. Its inhibitory effect may be removed by proteolysis or conformational changes, making the catalytic site accessible to the substrate NADPH and/or enabling electrons to be transferred from NADPH to O2.
Collapse
Affiliation(s)
- C Dupuy
- Unité 96 I.N.S.E.R.M., Le Kremlin-Bicêtre, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Muto H, Shinada M, Tokuta K, Takizawa Y. Rapid changes in concentrations of essential elements in organs of rats exposed to methylmercury chloride and mercuric chloride as shown by simultaneous multielemental analysis. BRITISH JOURNAL OF INDUSTRIAL MEDICINE 1991; 48:382-388. [PMID: 2064976 PMCID: PMC1035382 DOI: 10.1136/oem.48.6.382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
An in vivo study of rats given a dominant lethal dose of methylmercury chloride (MMC) or mercuric chloride (HgCl2) was conducted to elucidate the rapid biotransformation of essential elements. The elements were measured by inductively coupled plasma atomic emission spectrometry. For the rat brain Zn concentrations were higher in the MMC group than in the HgCl2 and control groups. The highest Cu concentration was found in HgCl2 dosed rat liver. For the rat kidney the highest Zn concentration was seen in the MMC group. From principal component analysis on the time dependent behaviour of each element in rat organs, characteristics specific to Cu in the liver and kidney and Mn in the brain were found after exposure to HgCl2 and Ca and Zn in the brain after exposure to MMC.
Collapse
Affiliation(s)
- H Muto
- Environmental Research Center, Akita University, Japan
| | | | | | | |
Collapse
|
15
|
Abstract
In conclusion, charged membrane together with their adjacent electrolyte solution form a thermodynamic and physico-chemical entity. Their surfaces represent an exceptionally complicated interfacial system owing to intrinsic membrane complexity, as well as to the polarity and often large thickness of the interfacial region. Despite this, charged membranes can be described reasonably accurately within the framework of available theoretical models, provided that the latter are chosen on the basis of suitable criteria, which are briefly discussed in Section A. Interion correlations are likely to be important for the regular and/or rigid, thin membrane-solution interfaces. Lateral distribution of the structural membrane charge is seldom and charge distribution perpendicular to the membranes is nearly always electrostatically important. So is the interfacial hydration, which to a large extent determines the properties of the innermost part of the interfacial region, with a thickness of 2-3 nm. Fine structure of the ion double-layer and the interfacial smearing of the structural membrane charge decrease whilst the surface hydration increases the calculated value of the electrostatic membrane potential relative to the result of common Gouy-Chapman approximation. In some cases these effects partly cancel-out; simple electrostatic models are then fairly accurate. Notwithstanding this, it is at present difficult to draw detailed molecular conclusions from a large part of the published data, mainly owing to the lack of really stringent controls or calibrations. Ion binding to the membrane surface is a complicated process which involves charge-charge as well as charge-solvent interactions. Its efficiency normally increases with the ion valency and with the membrane charge density, but it is also strongly dependent on the physico-chemical and thermodynamic state of the membrane. Except in the case of the stereospecific ion binding to a membrane, the relatively easily accessible phosphate and carboxylic groups on lipids and integral membrane proteins are the main cation binding sites. Anions bind preferentially to the amine groups, even on zwitterionic molecules. Membrane structure is apt to change upon ion binding but not always in the same direction: membranes with bound ions can either expand or become more condensed, depending on the final hydrophilicity (polarity) of the membrane surface. The more polar membranes, as a rule, are less tightly packed and more fluid. Diffusive ion flow across a membrane depends on the transmembrane potential and concentration gradients, but also on the coulombic and hydration potentials at the membrane surface.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- G Cevc
- Medizinische Biophysik, Technischen Universität München, F.R.G
| |
Collapse
|
16
|
|
17
|
Frederickson CJ. Neurobiology of zinc and zinc-containing neurons. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1989; 31:145-238. [PMID: 2689380 DOI: 10.1016/s0074-7742(08)60279-2] [Citation(s) in RCA: 823] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- C J Frederickson
- Laboratory for Neurobiology, University of Texas at Dallas, Richardson 75080
| |
Collapse
|
18
|
Heywood BR, Molloy KC, Waterfield PC. Organotin biocides XV: Modelling the interactions of triorganotins with cell membranes. Appl Organomet Chem 1989. [DOI: 10.1002/aoc.590030511] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Abstract
Human platelets incubated with Cd2+ took up the cation slowly, and the uptake was speeded up by ionophore A23187. The capacity of human platelets to accumulate Cd2+ was large, equivalent to 10 nmol Cd2+ per mg protein. The effects of Cd2+ on protein phosphorylation and serotonin release of human platelets were studied. Washed platelets incubated with Cd2+ showed a general increase in protein phosphorylation concurrent with a slow release of serotonin. In the presence of ionophore A23187, however, Cd2+ had a biphasic effect on protein phosphorylation: stimulatory at low and inhibitory at high Cd2+ concentrations. The phosphorylation of two proteins with molecular masses close to 43 and 20 kDa was more sensitive to the inhibitory effect of Cd2+, and under similar conditions, the primary effect of Cd2+ on serotonin release was inhibitory, although at lower Cd2+ concentrations a slight stimulation was noted. Thrombin increased the phosphorylation of several proteins, and a prior incubation with Cd2+ further augmented that of a 20 kDa protein, but this treatment did not affect thrombin-induced serotonin release.
Collapse
Affiliation(s)
- L Pezzi
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN 38101
| | | |
Collapse
|
20
|
Deleers M, Servais JP, Wulfert E. Synergistic effects of micromolar concentrations of Zn2+ and Ca2+ on membrane fusion. Biochem Biophys Res Commun 1986; 137:101-7. [PMID: 3718505 DOI: 10.1016/0006-291x(86)91181-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Resonance Energy Transfer between N-(7-nitro-2,1,3 benzoxadiazol -4 yl) phosphatidyl ethanolamine and N-Lissamine-Rhodamine B sulfonyl) phosphatidyl ethanolamine embedded in two different populations of small unilamellar vesicles made of phosphatidyl serine has been used to study the fusion process induced by Zn2+ and Ca2+. Lipid intermixing demonstrating fusion of liposome membranes can already be observed at 125 and 250 mumol/l of Zn2+. After short time pre-incubations with micromolar concentrations of Zn2+ as low as 150 mumol/l, Ca2+ induces an instantaneous increase of vesicle fusion. The lipid intermixing induced by micromolar concentrations of Ca2+ (250-500 mumol/l) could be increased up to 4 times when pre-incubated with 150 or 200 mumol/l of Zn2+. The effect of 1 mM of Ca2+ alone on lipid intermixing can be mimicked by 150 mumol/l of Zn2+ followed by 500 mumol/l of Ca2+. Our data demonstrate that Zn2+ and Ca2+ act synergistically to affect cation-induced membrane fusion. We suggest that Zn2+ specifically alters the physical state of phospholipid membranes making them more prone to calcium-triggered fusion.
Collapse
|
21
|
Deleers M, Servais JP, Wulfert E. Micromolar concentrations of Zn2+ potentiates Ca2+-induced phase separation of phosphatidyl serine containing liposomes. Biochem Biophys Res Commun 1986; 136:476-81. [PMID: 3707585 DOI: 10.1016/0006-291x(86)90465-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fluorescence quenching of 1-acyl-2-[6[(7 nitro-2,1,3-benzoxadiazol-4yl) amino]caproyl] phosphatidyl choline in small unilamellar vesicles consisting of phosphatidyl serine has been used to monitor the lipid phase separation induced by Zn2+ and Ca2+. Phase separation of vesicle membranes was observed with Zn2+ at concentrations as low as 125 microM. Low concentrations of Zn2+ required long incubation times to reach maximal quenching (120 minutes at 375 microM). When low concentrations of Ca2+ were added to the preparation during the developing phase of Zn2+-induced quenching, an explosive increase in fluorescence quenching was instantenously observed. Phase separation induced by sub-millimolar concentrations of Ca2+ could be increased at least 4 times when vesicles were pre-incubated with 250 microM of Zn2+.
Collapse
|