1
|
Musliha A, Dermawan D, Rahayu P, Tjandrawinata RR. Unraveling modulation effects on albumin synthesis and inflammation by Striatin, a bioactive protein fraction isolated from Channa striata: In silico proteomics and in vitro approaches. Heliyon 2024; 10:e38386. [PMID: 39398063 PMCID: PMC11467539 DOI: 10.1016/j.heliyon.2024.e38386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Hypoalbuminemia, associated with inflammation in severely ill patients, can emerge due to decreased albumin production. Transforming growth factor-beta (TGF-β) and nuclear factor-kappa B (NF-κB) are critical signaling pathways responsible for decreased albumin expression. This study explores the protein content and modulation effects of Striatin on albumin synthesis and inflammation, employing in silico proteomics and in vitro investigations. In the in silico proteomics realm, LC/MS-MS protein sequencing, 3D modeling, protein-protein docking simulations, 100 ns molecular dynamics (MD) simulations, and MM/PBSA binding free energy calculations were carried out. Complementing this, in vitro studies examined Albumin gene expression and extracellular secretion in HepG2 cells subjected to lipopolysaccharides-induced hypoalbuminemia. Furthermore, the study probed Striatin's influence on the NF-ᴋB expression, given albumin's role as a negative acute-phase protein. The results unveiled nucleoside diphosphate kinase (NdK) and parvalbumin (PV) as the prominent constituents within Striatin. Notably, NdK and PV exhibited the ability to disrupt hydrogen bonds with specific residues in both TGF-β and NF-κB complexes, thereby enhancing their flexibility, akin to the action of the FKBP12 complex (antagonist complex). In the in vitro experiments, Striatin demonstrated a dose and time-dependent inhibition of hypoalbuminemia, with peak efficacy observed at a concentration of 20 μg/mL. At this concentration, Striatin also suppressed NF-κB expression when co-incubated with lipopolysaccharides. While these findings suggest potential inhibitory effects of Striatin on TGF-β and NF-κB activities, they are preliminary and warrant further investigation. This study highlights Striatin's potential as a therapeutic agent for inflammation-related hypoalbuminemia, though additional research is needed to fully validate these results.
Collapse
Affiliation(s)
- Affina Musliha
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Jababeka Industrial Estate II, Jl. Industri Selatan V Blok PP No. 7 Cikarang, 17550, Indonesia
| | - Doni Dermawan
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Jababeka Industrial Estate II, Jl. Industri Selatan V Blok PP No. 7 Cikarang, 17550, Indonesia
| | - Puji Rahayu
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Jababeka Industrial Estate II, Jl. Industri Selatan V Blok PP No. 7 Cikarang, 17550, Indonesia
| | - Raymond R. Tjandrawinata
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Jababeka Industrial Estate II, Jl. Industri Selatan V Blok PP No. 7 Cikarang, 17550, Indonesia
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, South Jakarta 12930, Indonesia
| |
Collapse
|
2
|
Liu S, Cheng C, Zhu L, Zhao T, Wang Z, Yi X, Yan F, Wang X, Li C, Cui T, Yang B. Liver organoids: updates on generation strategies and biomedical applications. Stem Cell Res Ther 2024; 15:244. [PMID: 39113154 PMCID: PMC11304926 DOI: 10.1186/s13287-024-03865-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
The liver is the most important metabolic organ in the body. While mouse models and cell lines have further deepened our understanding of liver biology and related diseases, they are flawed in replicating key aspects of human liver tissue, particularly its complex structure and metabolic functions. The organoid model represents a major breakthrough in cell biology that revolutionized biomedical research. Organoids are in vitro three-dimensional (3D) physiological structures that recapitulate the morphological and functional characteristics of tissues in vivo, and have significant advantages over traditional cell culture methods. In this review, we discuss the generation strategies and current advances in the field focusing on their application in regenerative medicine, drug discovery and modeling diseases.
Collapse
Affiliation(s)
- Sen Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China
| | | | - Liuyang Zhu
- First Central Clinical College of Tianjin Medical University, Tianjin, 300192, China
| | - Tianyu Zhao
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China
| | - Ze Wang
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China
- Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiulin Yi
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China
- Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Fengying Yan
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China
- Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaoliang Wang
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China
| | - Chunli Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Tao Cui
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China.
- Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Baofeng Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China.
- School of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
3
|
Mazzocchi A, Yoo KM, Nairon KG, Kirk LM, Rahbar E, Soker S, Skardal A. Exploiting maleimide-functionalized hyaluronan hydrogels to test cellular responses to physical and biochemical stimuli. Biomed Mater 2022; 17:10.1088/1748-605X/ac45eb. [PMID: 34937006 PMCID: PMC9528802 DOI: 10.1088/1748-605x/ac45eb] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/22/2021] [Indexed: 11/11/2022]
Abstract
Currentin vitrothree-dimensional (3D) models of liver tissue have been limited by the inability to study the effects of specific extracellular matrix (ECM) components on cell phenotypes. This is in part due to limitations in the availability of chemical modifications appropriate for this purpose. For example, hyaluronic acid (HA), which is a natural ECM component within the liver, lacks key ECM motifs (e.g. arginine-glycine-aspartic acid (RGD) peptides) that support cell adhesion. However, the addition of maleimide (Mal) groups to HA could facilitate the conjugation of ECM biomimetic peptides with thiol-containing end groups. In this study, we characterized a new crosslinkable hydrogel (i.e. HA-Mal) that yielded a simplified ECM-mimicking microenvironment supportive of 3D liver cell culture. We then performed a series of experiments to assess the impact of physical and biochemical signaling in the form of RGD peptide incorporation and transforming growth factorß(TGF-ß) supplementation, respectively, on hepatic functionality. Hepatic stellate cells (i.e. LX-2) exhibited increased cell-matrix interactions in the form of cell spreading and elongation within HA-Mal matrices containing RGD peptides, enabling physical adhesions, whereas hepatocyte-like cells (HepG2) had reduced albumin and urea production. We further exposed the encapsulated cells to soluble TGF-ßto elicit a fibrosis-like state. In the presence of TGF-ßbiochemical signals, LX-2 cells became activated and HepG2 functionality significantly decreased in both RGD-containing and RGD-free hydrogels. Altogether, in this study we have developed a hydrogel biomaterial platform that allows for discrete manipulation of specific ECM motifs within the hydrogel to better understand the roles of cell-matrix interactions on cell phenotype and overall liver functionality.
Collapse
Affiliation(s)
- Andrea Mazzocchi
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC 27101, United States of America.,Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, 575 N. Patterson Ave. Suite 530, Winston-Salem, NC 27101, United States of America
| | - Kyung Min Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC 27101, United States of America
| | - Kylie G Nairon
- Department of Biomedical Engineering, The Ohio State University, 140 W. 19th Ave, Columbus, OH 43210, United States of America
| | - L Madison Kirk
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, 575 N. Patterson Ave. Suite 530, Winston-Salem, NC 27101, United States of America
| | - Elaheh Rahbar
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, 575 N. Patterson Ave. Suite 530, Winston-Salem, NC 27101, United States of America
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC 27101, United States of America.,Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, 575 N. Patterson Ave. Suite 530, Winston-Salem, NC 27101, United States of America
| | - Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC 27101, United States of America.,Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, 575 N. Patterson Ave. Suite 530, Winston-Salem, NC 27101, United States of America.,Department of Biomedical Engineering, The Ohio State University, 140 W. 19th Ave, Columbus, OH 43210, United States of America.,The Ohio State University and Arthur G. James Comprehensive Cancer Center, 460 W. 10th Ave, Columbus, OH 43210, United States of America
| |
Collapse
|
4
|
Three-Dimensional Liver Culture Systems to Maintain Primary Hepatic Properties for Toxicological Analysis In Vitro. Int J Mol Sci 2021; 22:ijms221910214. [PMID: 34638555 PMCID: PMC8508724 DOI: 10.3390/ijms221910214] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 12/13/2022] Open
Abstract
Drug-induced liver injury (DILI) is the major reason for failures in drug development and withdrawal of approved drugs from the market. Two-dimensional cultures of hepatocytes often fail to reliably predict DILI: hepatoma cell lines such as HepG2 do not reflect important primary-like hepatic properties and primary human hepatocytes (pHHs) dedifferentiate quickly in vitro and are, therefore, not suitable for long-term toxicity studies. More predictive liver in vitro models are urgently required in drug development and compound safety evaluation. This review discusses available human hepatic cell types for in vitro toxicology analysis and their usage in established and emerging three-dimensional (3D) culture systems. Generally, 3D cultures maintain or improve primary hepatic functions (including expression of drug-metabolizing enzymes) of different liver cells for several weeks of culture, thus allowing long-term and repeated-dose toxicity studies. Spheroid cultures of pHHs have been comprehensively tested, but also other cell types such as HepaRG benefit from 3D culture systems. Emerging 3D culture techniques include usage of induced pluripotent stem-cell-derived hepatocytes and primary-like upcyte cells, as well as advanced culture techniques such as microfluidic liver-on-a-chip models. In-depth characterization of existing and emerging 3D hepatocyte technologies is indispensable for successful implementation of such systems in toxicological analysis.
Collapse
|
5
|
Farooqi HMU, Kang B, Khalid MAU, Salih ARC, Hyun K, Park SH, Huh D, Choi KH. Real-time monitoring of liver fibrosis through embedded sensors in a microphysiological system. NANO CONVERGENCE 2021; 8:3. [PMID: 33528697 PMCID: PMC7855143 DOI: 10.1186/s40580-021-00253-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/18/2021] [Indexed: 05/03/2023]
Abstract
Hepatic fibrosis is a foreshadowing of future adverse events like liver cirrhosis, liver failure, and cancer. Hepatic stellate cell activation is the main event of liver fibrosis, which results in excessive extracellular matrix deposition and hepatic parenchyma's disintegration. Several biochemical and molecular assays have been introduced for in vitro study of the hepatic fibrosis progression. However, they do not forecast real-time events happening to the in vitro models. Trans-epithelial electrical resistance (TEER) is used in cell culture science to measure cell monolayer barrier integrity. Herein, we explored TEER measurement's utility for monitoring fibrosis development in a dynamic cell culture microphysiological system. Immortal HepG2 cells and fibroblasts were co-cultured, and transforming growth factor β1 (TGF-β1) was used as a fibrosis stimulus to create a liver fibrosis-on-chip model. A glass chip-based embedded TEER and reactive oxygen species (ROS) sensors were employed to gauge the effect of TGF-β1 within the microphysiological system, which promotes a positive feedback response in fibrosis development. Furthermore, albumin, Urea, CYP450 measurements, and immunofluorescent microscopy were performed to correlate the following data with embedded sensors responses. We found that chip embedded electrochemical sensors could be used as a potential substitute for conventional end-point assays for studying fibrosis in microphysiological systems.
Collapse
Affiliation(s)
| | - Bohye Kang
- Department of Mechatronics Engineering, Jeju National University, Jeju-si, Republic of Korea
| | | | | | - Kinam Hyun
- Department of Mechatronics Engineering, Jeju National University, Jeju-si, Republic of Korea
| | - Sung Hyuk Park
- Department of Mechatronics Engineering, Jeju National University, Jeju-si, Republic of Korea
| | - Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, Jeju-si, Republic of Korea.
| |
Collapse
|
6
|
Metabolic activity testing can underestimate acute drug cytotoxicity as revealed by HepG2 cell clones overexpressing cytochrome P450 2C19 and 3A4. Toxicology 2019; 412:37-47. [DOI: 10.1016/j.tox.2018.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 02/06/2023]
|
7
|
Kammerer S, Küpper JH. Optimized protocol for induction of cytochrome P450 enzymes 1A2 and 3A4 in human primary-like hepatocyte cell strain HepaFH3 to study in vitro toxicology. Clin Hemorheol Microcirc 2018; 70:563-571. [PMID: 30347615 DOI: 10.3233/ch-189321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Drug induced liver injury (DILI) is the most frequent cause for failure of new drugs in clinical studies. Thus, toxicity studies are indispensable during drug development. The proliferative human liver cell strain HepaFH3 with promising primary-like cellular properties might be a suitable liver model for such studies, but its cytochrome-P450 (CYP) expression is still in low ranges compared to freshly isolated primary human hepatocytes. OBJECTIVE We aimed to optimize the induction protocol for CYP1A2 and CYP3A4 in HepaFH3 to obtain a physiologically relevant in vitro liver model. METHODS CYP1A2 and CYP3A4 were induced by omeprazole and rifampicin, respectively. Induction of the two CYPs was measured by qRT-PCR, immunofluorescence and by P450 Glo enzyme activity assays. RESULTS The optimized protocol made the experimental design six days shorter than the original procedure. CYP1A2 mRNA levels were induced 118-fold, CYP3A4 levels 36-fold. This result was also reflected at protein level. Enzymatic activity of CYP1A2 increased 3.7-fold and CYP3A4 activity increased 9.8-fold after induction. CONCLUSIONS We succeeded in optimizing the induction protocol for HepaFH3 to such an extent that CYP1A2 and CYP3A4 are expressed in sufficient amounts that the cell strain can be used as a physiological relevant human liver model for in vitro toxicology studies.
Collapse
Affiliation(s)
- Sarah Kammerer
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Germany
| | - Jan-Heiner Küpper
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Germany
| |
Collapse
|
8
|
Kammerer S, Küpper JH. Human hepatocyte systems for in vitro toxicology analysis. ACTA ACUST UNITED AC 2018. [DOI: 10.3233/jcb-179012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sarah Kammerer
- Institute of Biotechnology, Brandenburg University of Technology, Cottbus-Senftenberg, Germany
| | - Jan-Heiner Küpper
- Institute of Biotechnology, Brandenburg University of Technology, Cottbus-Senftenberg, Germany
| |
Collapse
|
9
|
Asai A, Aihara E, Watson C, Mourya R, Mizuochi T, Shivakumar P, Phelan K, Mayhew C, Helmrath M, Takebe T, Wells J, Bezerra JA. Paracrine signals regulate human liver organoid maturation from induced pluripotent stem cells. Development 2017; 144:1056-1064. [PMID: 28275009 DOI: 10.1242/dev.142794] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/01/2017] [Indexed: 12/17/2022]
Abstract
A self-organizing organoid model provides a new approach to study the mechanism of human liver organogenesis. Previous animal models documented that simultaneous paracrine signaling and cell-to-cell surface contact regulate hepatocyte differentiation. To dissect the relative contributions of the paracrine effects, we first established a liver organoid using human induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) as previously reported. Time-lapse imaging showed that hepatic-specified endoderm iPSCs (HE-iPSCs) self-assembled into three-dimensional organoids, resulting in hepatic gene induction. Progressive differentiation was demonstrated by hepatic protein production after in vivo organoid transplantation. To assess the paracrine contributions, we employed a Transwell system in which HE-iPSCs were separately co-cultured with MSCs and/or HUVECs. Although the three-dimensional structure did not form, their soluble factors induced a hepatocyte-like phenotype in HE-iPSCs, resulting in the expression of bile salt export pump. In conclusion, the mesoderm-derived paracrine signals promote hepatocyte maturation in liver organoids, but organoid self-organization requires cell-to-cell surface contact. Our in vitro model demonstrates a novel approach to identify developmental paracrine signals regulating the differentiation of human hepatocytes.
Collapse
Affiliation(s)
- Akihiro Asai
- Pediatric Liver Care Center, Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Eitaro Aihara
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Carey Watson
- Division of Pediatric Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Reena Mourya
- Pediatric Liver Care Center, Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tatsuki Mizuochi
- Pediatric Liver Care Center, Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Pranavkumar Shivakumar
- Pediatric Liver Care Center, Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kieran Phelan
- Pediatric Liver Care Center, Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Christopher Mayhew
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michael Helmrath
- Division of Pediatric Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Takanori Takebe
- Department of Regenerative Medicine, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| | - James Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jorge A Bezerra
- Pediatric Liver Care Center, Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
10
|
Norona LM, Nguyen DG, Gerber DA, Presnell SC, LeCluyse EL. Editor's Highlight: Modeling Compound-Induced Fibrogenesis In Vitro Using Three-Dimensional Bioprinted Human Liver Tissues. Toxicol Sci 2016; 154:354-367. [PMID: 27605418 DOI: 10.1093/toxsci/kfw169] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Compound-induced liver injury leading to fibrosis remains a challenge for the development of an Adverse Outcome Pathway useful for human risk assessment. Latency to detection and lack of early, systematically detectable biomarkers make it difficult to characterize the dynamic and complex intercellular interactions that occur during progressive liver injury. Here, we demonstrate the utility of bioprinted tissue constructs comprising primary hepatocytes, hepatic stellate cells, and endothelial cells to model methotrexate- and thioacetamide-induced liver injury leading to fibrosis. Repeated, low-concentration exposure to these compounds enabled the detection and differentiation of multiple modes of liver injury, including hepatocellular damage, and progressive fibrogenesis characterized by the deposition and accumulation of fibrillar collagens in patterns analogous to those described in clinical samples obtained from patients with fibrotic liver injury. Transient cytokine production and upregulation of fibrosis-associated genes ACTA2 and COL1A1 mimics hallmark features of a classic wound-healing response. A surge in proinflammatory cytokines (eg, IL-8, IL-1β) during the early culture time period is followed by concentration- and treatment-dependent alterations in immunomodulatory and chemotactic cytokines such as IL-13, IL-6, and MCP-1. These combined data provide strong proof-of-concept that 3D bioprinted liver tissues can recapitulate drug-, chemical-, and TGF-β1-induced fibrogenesis at the cellular, molecular, and histological levels and underscore the value of the model for further exploration of compound-specific fibrogenic responses. This novel system will enable a more comprehensive characterization of key attributes unique to fibrogenic agents during the onset and progression of liver injury as well as mechanistic insights, thus improving compound risk assessment.
Collapse
Affiliation(s)
- Leah M Norona
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 .,Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, North Carolina 27599.,The Institute for Drug Safety Sciences, Research Triangle Park, North Carolina 27709
| | - Deborah G Nguyen
- Research and Development, Organovo, Inc, San Diego, California 92121
| | - David A Gerber
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Sharon C Presnell
- Research and Development, Organovo, Inc, San Diego, California 92121
| | - Edward L LeCluyse
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,The Institute for Drug Safety Sciences, Research Triangle Park, North Carolina 27709
| |
Collapse
|
11
|
Pagan R, Sánchez A, Martin I, Llobera M, Fabregat I, Vilaró S. Effects of growth and differentiation factors on the epithelial-mesenchymal transition in cultured neonatal rat hepatocytes. J Hepatol 1999; 31:895-904. [PMID: 10580588 DOI: 10.1016/s0168-8278(99)80292-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND/AIMS Loss of specific differentiation markers, adoption of a migrating morphology and progressive replacement of the cytokeratin network by vimentin intermediate filaments characterize the epithelial-mesenchymal transition of cultured neonatal rat hepatocytes. In a previous study (Hepatology 1997; 25: 598-606), we reported that this process can be differentially regulated by EGF and DMSO, two agents that affect hepatocyte growth and differentiation. The aim of the present study was to determine if growth activation or differential gene expression could explain the differences in EMT observed between these two factors. METHODS We compared the effects of EGF, HGF, TGF-beta1 and DMSO on growth, proto-oncogene expression, epithelial-mesenchymal transition markers and expression of liver transcription factors in cultured neonatal rat hepatocytes using thymidine incorporation, Northern blotting and Western blotting analysis. RESULTS When TGF-beta1 or DMSO was added to the cultures supplemented with EGF and HGF, the mitogenic activity induced by these factors was inhibited. DMSO down-regulated c-myc and c-fos expression. mRNA levels of some liver-specific genes such as albumin, or liver-enriched transcription factors such as C/EBPdelta, HNF-4 and HNF-1beta were slightly different in cultures supplemented with DMSO or TGF-beta1. However, no differences were found when DMSO or TGF-beta1 was added to the cultures supplemented with EGF. Western blotting analysis showed that TGF-beta1 decreased cytokeratin and increased vimentin levels, while DMSO decreased both cytokeratin and vimentin. When DMSO or TGF-beta1 was added in combination with EGF or HGF, both factors maintained the increase in albumin and cytokeratin induced by the growth factors although DMSO, but not TGF-beta1, inhibited vimentin expression. CONCLUSIONS Activation of vimentin expression produced in cultures supplemented with the mitogenic factors (EGF and HGF) is independent of the activation of cell growth, because DMSO but not TGF-beta1 can abolish vimentin synthesis, although both inhibited growth. Moreover, the vimentin expression in these cultures seems to be independent of the mRNA levels of transcription factors associated with the differentiated liver phenotype.
Collapse
Affiliation(s)
- R Pagan
- Department de Biologia Cel.lular, Universitat de Barcelona, Catalonia, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
The acute phase response is an orchestrated response to tissue injury, infection or inflammation. A prominent feature of this response is the induction of acute phase proteins, which are involved in the restoration of homeostasis. Cytokines are important mediators of the acute phase response. Uncontrolled and prolonged action of cytokines is potentially harmful, therefore mechanisms exist which limit the activity of cytokines; these include soluble cytokine receptors and receptor antagonists. The cytokine signal is transmitted into the cell via membrane-bound receptors. Different intracellular signalling pathways are activated by different cytokine-receptor interactions. Eventually, cytokine-inducible transcription factors interact with their response elements in the promotor region of acute phase genes and transcription is induced. Systemic inflammation results in a systemic acute phase response. However, local inflammatory or injurious processes in the liver may also induce an acute phase response, for example after partial hepatectomy and during hepatic fibrosis. The acute phase proteins induced in these conditions probably act to limit proteolytic and/or fibrogenic activity and tissue damage. The possible function of the acute phase protein alpha 2-macroglobulin in hepatic fibrosis is discussed in some detail.
Collapse
Affiliation(s)
- H Moshage
- Department of Medicine, University Hospital Groningen, The Netherlands.
| |
Collapse
|
13
|
Sanchez A, Alvarez AM, Benito M, Fabregat I. Transforming growth factor beta modulates growth and differentiation of fetal hepatocytes in primary culture. J Cell Physiol 1995; 165:398-405. [PMID: 7593218 DOI: 10.1002/jcp.1041650221] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Fetal hepatocytes in primary culture are cells capable to carry out both proliferation and differentiation processes simultaneously. Previous studies have shown that these cells respond to mitogens, such as hepatocyte growth factor (HGF) or epidermal growth factor (EGF), inducing the expression of early genes, such as fos and myc. The transforming growth factor-beta (TGF-beta) family is one of the most influential groups of growth and differentiation factors. In this report, we show that TGF-beta 1 inhibits fetal hepatocyte proliferation, arresting these cells at G1 phase of the cell cycle. In addition, TGF-beta down-regulates the mitogen-induced myc early expression. However, TGF-beta has no effect on the expression of other protooncogenes, such as fos and H-ras. In addition to its inhibitory role on fetal hepatocyte growth, TGF-beta increases the mRNA levels of fibronectin, an extracellular matrix protein, and maintains the expression of some liver specific genes, such as albumin and alfafetoprotein, above control values. The analysis of the expression of some hepatocyte transcriptional factors has shown that TGF-beta increases HNF1 alpha and HNF1 beta mRNA levels. We conclude that TGF-beta may modulate liver growth and differentiation throughout fetal development.
Collapse
Affiliation(s)
- A Sanchez
- Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | | | | | | |
Collapse
|
14
|
Skretting G, Gjernes E, Prydz H. Regulation of lecithin:cholesterol acyltransferase by TGF-beta and interleukin-6. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1255:267-72. [PMID: 7734442 DOI: 10.1016/0005-2760(94)00240-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The human hepatoma derived HepG2 cells were treated with transforming growth factor-beta (TGF-beta) or interleukin-6 (IL-6) +/- dexamethasone. The effects of treatment on lecithin:cholesterol acyltransferase (LCAT) catalytic activity and mRNA level as well as on the apolipoprotein A-I (apo A-I) mRNA level were determined. Both the LCAT activity in medium from treated HepG2 cells and the LCAT mRNA level were decreased by TGF-beta. There was no significant effect of IL-6 +/- dexamethasone, neither on the LCAT activity nor on LCAT mRNA levels. Treatment with dexamethasone alone resulted in a decreased LCAT activity in spite of a slight increase in LCAT mRNA level. The apo A-I mRNA level was reduced after treatment with TGF-beta and increased after treatment with IL-6 +/- dexamethasone and dexamethasone alone. To analyze if the effects on mRNA levels were caused by transcriptional or post-transcriptional mechanisms, run-on experiments on isolated nuclei from treated HepG2 cells and mRNA degradation experiments were performed. The transcription rate of the LCAT gene was not affected by TGF-beta, but was increased (50-100%) after treatment with IL-6 +/- dexamethasone and dexamethasone alone. The transcription rate of the apo A-I gene was reduced (20%) by TGF-beta and increased (30-60%) by IL-6 +/- dexamethasone and dexamethasone alone. Both dexamethasone and TGF-beta increased the rate of LCAT mRNA degradation. These results show that the reduced LCAT mRNA level after treatment with TGF-beta was caused by post-transcriptional mechanisms.
Collapse
Affiliation(s)
- G Skretting
- Biotechnology Centre of Oslo, University of Oslo, Norway
| | | | | |
Collapse
|
15
|
Johnston DE, Jefferson DM. Characterization of a serum factor that decreases albumin mRNA in cultured hepatocytes. In Vitro Cell Dev Biol Anim 1994; 30A:464-70. [PMID: 7524978 DOI: 10.1007/bf02631315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
When primary cultures of hepatocytes are exposed to media containing fetal bovine serum (FBS) there is a rapid decrease in levels of tissue-specific mRNAs such as albumin mRNA. We used Northern blot analysis to examine mRNA levels in cultured hepatocytes, and characterized the factor in FBS that significantly reduces the steady state albumin mRNA level. Neonatal bovine serum or serum derived from platelet-poor calf plasma proved as potent as did FBS, but commercial bovine serum albumin did not exhibit this inhibitory activity. Inhibitory activity of FBS was not removed by moderate heat treatment, dialysis, or extraction with organic solvents. However, incubation of FBS with a highly anionic detergent such as 0.1% sodium dodecyl sulfate or N-lauroyl sarcosine, followed by extensive dialysis, resulted in sera that did not inhibit expression of albumin mRNA. These sera supported cell attachment and seemed non-toxic toward the cells. Ammonium sulfate fractionation of FBS showed the activity was present in the 45 to 70% fraction, and trypsin digestion destroyed the inhibitory activity. Gel exclusion chromatography gave a molecular weight of 60,000 to 70,000. Fractionation of serum proteins by DEAE-Sephacel or Cibacron blue-agarose showed enrichment for albumin in the most active fractions. Interestingly, metabolic labeling of secreted and cellular proteins with 35S-methionine and cysteine showed no significant difference between hepatocytes maintained for 2 days beforehand in serum-free or serum-supplemented media, and no difference between detergent-treated FBS and control FBS.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D E Johnston
- Department of Medicine, New England Medical Center, Boston, Massachusetts 02111
| | | |
Collapse
|
16
|
Loyer P, Ilyin G, Abdel Razzak Z, Banchereau J, Dezier JF, Campion JP, Guguen-Guillouzo C, Guillouzo A. Interleukin 4 inhibits the production of some acute-phase proteins by human hepatocytes in primary culture. FEBS Lett 1993; 336:215-20. [PMID: 7505238 DOI: 10.1016/0014-5793(93)80806-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Interleukin 4 (IL4) has been shown to exhibit anti-inflammatory effects by inhibiting the secretion by monocytes of proinflammatory cytokines such as interleukin 1 (IL1), interleukin 6 (IL6), and tumor necrosis factor (TNF) and by inducing the secretion of the IL1 receptor antagonist. We investigated the role of this cytokine on the production of acute-phase proteins in primary human hepatocyte cultures. Cells were exposed to either IL4 and/or IL6, the most potent mediator of hepatic acute phase proteins. IL4 led to decreased production of haptoglobin, C-reactive protein and albumin while alpha 1-antitrypsin and fibrinogen remained unaffected. These inhibitory effects of IL4 were also observed at the mRNA level. In addition, IL4 inhibited the IL6-induced production of haptoglobin although it had no effect on the induced C-reactive protein and fibrinogen. Our results demonstrate that IL4 can affect the production of a subset of acute-phase proteins by human hepatocytes and can antagonize some of the effects of IL6. These observations reinforce the notion that IL4 can be considered as an anti-inflammatory cytokine.
Collapse
Affiliation(s)
- P Loyer
- Institut National de la Santé et de la Recherche Médicale, Unité de Recherches Hépatologues U-49, Hôpital Pontchaillou, Rennes, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Guillouzo A, Morel F, Fardel O, Meunier B. Use of human hepatocyte cultures for drug metabolism studies. Toxicology 1993; 82:209-19. [PMID: 8236275 DOI: 10.1016/0300-483x(93)90065-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Among the in vitro models developed to investigate drug metabolism isolated hepatocytes have become the most powerful model. Human hepatocytes can be prepared from whole livers and surgical wedge biopsies. When placed in culture they retain their specific drug metabolizing activities including inducible cytochrome P450 enzymes for several days. Primary human hepatocyte cultures are now increasingly used for studying drug behavior during preclinical development, e.g. drug interactions, stereoselective drug metabolism and drug metabolic profiles. As a rule there is a good in vivo/in vitro correlation in drug biotransformation activity. The main metabolites found in vivo are recovered in vitro. However, quantitative differences are frequently observed.
Collapse
Affiliation(s)
- A Guillouzo
- Inserm U49, Unite de Recherches Hépatologiques, Hôpital Pontchaillou Rennes, France
| | | | | | | |
Collapse
|
18
|
Beauchamp RD, Sheng HM, Ishizuka J, Townsend CM, Thompson JC. Transforming growth factor (TGF)-beta stimulates hepatic jun-B and fos-B proto-oncogenes and decreases albumin mRNA. Ann Surg 1992; 216:300-7; discussion 307-8. [PMID: 1417179 PMCID: PMC1242612 DOI: 10.1097/00000658-199209000-00009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transforming growth factor-beta (TGF-beta) modulates some components of the acute phase response in hepatic cells. The mechanisms for these actions of TGF-beta are largely unknown. The authors recently found that the decrease in albumin mRNA after TGF-beta 1 treatment required de novo RNA and protein synthesis, suggesting that TGF-beta acts through induction of another gene. The purpose of the current study was to determine whether TGF-beta 1 could regulate the expression of both the jun and fos genes that encode transcriptional regulatory proteins that constitute the AP-1 complex, and to determine whether expression of these genes may be coordinated with the decrease in albumin mRNA. Northern blot hybridization was used to determine levels of specific mRNAs. Transforming growth factor-beta 1 increased the levels of both jun-B and fos-B mRNA by 60 minutes after treatment of mouse hepatoma (BWTG3) cells. When TGF-beta 1 was removed from the media after 4 hours, there was a sustained effect of increased jun-B and decreased albumin mRNA (greater than 48 hours), and the subsequent decrease in jun-B levels coincided with the increase in albumin mRNA. The tumor-promoting phorbol ester (phorbol 12-myristate 13-acetate [PMA]), known to induce jun and fos gene expression, caused increases in jun-B and fos-B that preceded the decrease in albumin mRNA levels at 24 hours. These observations are consistent with our hypothesis that jun-B and fos-B induction may participate in downregulation of albumin synthesis as well as other hepatic responses to TGF-beta.
Collapse
Affiliation(s)
- R D Beauchamp
- Department of Surgery, University of Texas Medical Branch, Galveston 77555
| | | | | | | | | |
Collapse
|