1
|
Todeschini V, Anastasia F, Nalin EC, Cesaro P, Massa N, Bona E, Sampò S, Berta G, Barbato R, Lingua G. Effects of P nutrition on growth and photosynthetic activity of tomato plants inoculated or not with AM fungi. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109923. [PMID: 40258316 DOI: 10.1016/j.plaphy.2025.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/04/2025] [Accepted: 04/14/2025] [Indexed: 04/23/2025]
Abstract
Arbuscular mycorrhizal (AM) fungi colonize plant roots, improving mineral nutrition and promoting photosynthesis. Phosphorus (P) has a key role in plant physiology, affecting the photosynthetic process and being involved in sugar/carbon metabolism. The aim of this work was to investigate the effects of the arbuscular mycorrhizal symbiosis and P nutrition on the growth parameters and photosynthetic activity of tomato plants grown in controlled conditions. Plants were maintained in a growth chamber for 50 days and watered three times a week with a Long Ashton nutrient solution at three different P levels (32, 96 and 288 μM, respectively). At harvest, mycorrhizal colonization, biomass production, P and photosynthetic pigment concentrations were measured. Moreover, the photosynthetic efficiency relating to the activity of the two photosystems and the biochemical analysis of proteins extracted from thylakoid membranes were also performed. Results showed that inoculation did not affect growth parameters. AM symbiosis was strongly inhibited at the highest P level. Plant biomass production was positively correlated with increasing level of P. The analysis of chlorophyll fluorescence in inoculated plants highlighted that Y(I), Y(II), ETR(I), ETR(II) varied proportionally to the AM colonization and inversely proportionally to the P supply, whether this effect on NPQ and ETR occurs by a modulation of the xanthophyll cycle, remains to be established.
Collapse
Affiliation(s)
- Valeria Todeschini
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy.
| | - Flavio Anastasia
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Elena Chiara Nalin
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Patrizia Cesaro
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Nadia Massa
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Elisa Bona
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, P.za San Eusebio 5, 13100, Vercelli, Italy
| | - Simonetta Sampò
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, P.za San Eusebio 5, 13100, Vercelli, Italy
| | - Graziella Berta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Roberto Barbato
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, P.za San Eusebio 5, 13100, Vercelli, Italy
| | - Guido Lingua
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| |
Collapse
|
2
|
Giacometti GM, Giacometti G. Twenty years of biophysics of photosynthesis in Padova, Italy (1984-2005): a tale of two brothers. PHOTOSYNTHESIS RESEARCH 2006; 88:241-58. [PMID: 16763879 DOI: 10.1007/s11120-006-9057-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 03/07/2006] [Indexed: 05/10/2023]
Abstract
This paper tells the history of two brothers, almost a generation apart in age, who met again, after having followed different academic paths, to introduce biophysical research in photosynthesis at the University of Padova. The development of two research groups, one in the Chemistry Department, the other in the Biology Department led to a comprehensive interdisciplinary group across academic barriers. The group of Giovanni Giacometti developed in Physical Chemistry, during the years before his retirement, with some roots which can be traced to the famous Linus Pauling school of the mid 1950s, and made possible, by the work of many students (especially Donatella Carbonera and Marilena Di Valentin) and of an older associate (Giancarlo Agostini). The group participated quite actively with a number of European and American laboratories in the application of physical techniques, especially Electron Spin Resonance (EPR) associated with Optical Spectroscopy (Optically Detected Magnetic Resonance; ODMR), and contributed to the development of the understanding of the structure-function relationships in photosynthetic membrane complexes, stimulated by the determination of the X-ray structure of the purple photosynthetic reaction center in the mid 1980s ( J. Deisenhofer, H. Michel, R. Huber and others). The younger brother of Giovanni, Giorgio Mario Giacometti, came to Padova after obtaining biochemical knowledge from the Rossi-Fanelli school in Rome, where Jeffries Wyman, Eraldo Antonini and Maurizio Brunori were the world masters of hemoglobin research. In Padova, together with a group of young scientists (at first Roberto Bassi and Roberto Barbato, now leaders of their own groups in Verona and in Alessandria respectively, followed soon by brilliant coworkers such as Fernanda Rigoni, Elisabetta Bergantino and more recently Ildikò Szabò and Paola Costantini), Giorgio approached more biochemical themes of oxygenic photosynthesis, such as purification and characterization of antenna chlorophyll-protein complexes, Photosystem II (PS II) particles and subunits, having always in mind structural and molecular problems at the level of the largest integrated particles, which are more difficult to investigate in detail by the spectroscopic techniques.
Collapse
Affiliation(s)
- Giorgio M Giacometti
- Department of Biology, University of Padova, Via Giuseppe Colombo 3, 35121 Padua, Italy.
| | | |
Collapse
|
3
|
Touloupakis E, Giannoudi L, Piletsky SA, Guzzella L, Pozzoni F, Giardi MT. A multi-biosensor based on immobilized Photosystem II on screen-printed electrodes for the detection of herbicides in river water. Biosens Bioelectron 2005; 20:1984-92. [PMID: 15741067 DOI: 10.1016/j.bios.2004.08.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 08/25/2004] [Accepted: 08/25/2004] [Indexed: 10/26/2022]
Abstract
A multi-biosensor for detection of herbicides and pollutants was constructed using various photosynthetic preparations as biosensing elements. The photosynthetic thylakoid from Spinacia oleracea L., Senecio vulgaris and its mutant resistant to atrazine were immobilized with (BSA-GA) on the surface of screen-printed sensors composed of a graphite-working electrode and Ag/AgCl reference electrode deposited on a polymeric substrate. The biosensor was composed of four flow cells with independent illumination of 650 nm to activate electron transfer in Photosystem II. The principle of the detection was based on the fact that herbicides selectively block electron transport activity in a concentration-dependent manner and that the four PSII biomediators show differential recognition activity toward herbicides. Changes of the activity were registered amperometrically as rate of photoreduction of the artificial electron acceptor DQ. The setup resulted in a reusable herbicide multibiosensor with a good stability (half-life of 16.7 h for spinach thylakoids) and limit of detection of about 10(-8) M for herbicides recovered in spring in river.
Collapse
Affiliation(s)
- E Touloupakis
- Institute of Crystallography (Section of IC-Bari), National Research Council of Italy (CNR), via Salaria km 29.300-00016, Monterotondo Scalo, Rome, Italy
| | | | | | | | | | | |
Collapse
|
4
|
Giardi MT, Cona A, Geiken B. Photosystem II core phosphorylation heterogeneity and the regulation of electron transfer in higher plants: a review. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/0302-4598(95)01819-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Barbato R, Friso G, Rigoni F, Dalla Vecchia F, Giacometti GM. Structural changes and lateral redistribution of photosystem II during donor side photoinhibition of thylakoids. J Cell Biol 1992; 119:325-35. [PMID: 1400577 PMCID: PMC2289643 DOI: 10.1083/jcb.119.2.325] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The structural and topological stability of thylakoid components under photoinhibitory conditions (4,500 microE.m-2.s-1 white light) was studied on Mn depleted thylakoids isolated from spinach leaves. After various exposures to photoinhibitory light, the chlorophyll-protein complexes of both photosystems I and II were separated by sucrose gradient centrifugation and analysed by Western blotting, using a set of polyclonals raised against various apoproteins of the photosynthetic apparatus. A series of events occurring during donor side photoinhibition are described for photosystem II, including: (a) lowering of the oligomerization state of the photosystem II core; (b) cleavage of 32-kD protein D1 at specific sites; (c) dissociation of chlorophyll-protein CP43 from the photosystem II core; and (d) migration of damaged photosystem II components from the grana to the stroma lamellae. A tentative scheme for the succession of these events is illustrated. Some effects of photoinhibition on photosystem I are also reported involving dissociation of antenna chlorophyll-proteins LHCI from the photosystem I reaction center.
Collapse
Affiliation(s)
- R Barbato
- Dipartimento di Biologia, Universita di Padova, Italy
| | | | | | | | | |
Collapse
|