1
|
Chintalapudi SR, Morales-Tirado VM, Williams RW, Jablonski MM. Multipronged approach to identify and validate a novel upstream regulator of Sncg in mouse retinal ganglion cells. FEBS J 2016; 283:678-93. [PMID: 26663874 DOI: 10.1111/febs.13620] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/22/2015] [Accepted: 12/03/2015] [Indexed: 11/26/2022]
Abstract
Loss of retinal ganglion cells (RGCs) is one of the hallmarks of retinal neurodegenerative diseases, glaucoma being one of the most common. Mechanistic studies on RGCs are hindered by the lack of sufficient primary cells and consensus regarding their signature markers. Recently, γ-synuclein (SNCG) has been shown to be highly expressed in the somas and axons of RGCs. In various mouse models of glaucoma, downregulation of Sncg gene expression correlates with RGC loss. To investigate the role of Sncg in RGCs, we used a novel systems genetics approach to identify a gene that modulates Sncg expression, followed by confirmatory studies in both healthy and diseased retinae. We found that chromosome 1 harbors an expression quantitative trait locus that modulates Sncg expression in the mouse retina, and identified the prefoldin-2 (PFDN2) gene as the candidate upstream modulator of Sncg expression. Our immunohistochemical analyses revealed similar expression patterns in both mouse and human healthy retinae, with PFDN2 colocalizing with SNCG in RGCs and their axons. In contrast, in retinae from glaucoma subjects, SNCG levels were significantly reduced, although PFDN2 levels were maintained. Using a novel flow cytometry-based RGC isolation method, we obtained viable populations of murine RGCs. Knocking down Pfdn2 expression in primary murine RGCs significantly reduced Sncg expression, confirming that Pfdn2 regulates Sncg expression in murine RGCs. Gene Ontology analysis indicated shared mitochondrial function associated with Sncg and Pfdn2. These data solidify the relationship between Sncg and Pfdn2 in RGCs, and provide a novel mechanism for maintaining RGC health.
Collapse
Affiliation(s)
- Sumana R Chintalapudi
- Department of Ophthalmology, The Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Vanessa M Morales-Tirado
- Department of Ophthalmology, The Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert W Williams
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Monica M Jablonski
- Department of Ophthalmology, The Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
2
|
Sin CK, Lee CW, Yoo SA, Youn HM, Jang KJ, Song CH, Ahn CB, Kim CH. Genes expression by using cDNA Microarray in Whallak-tang. J Pharmacopuncture 2008. [DOI: 10.3831/kpi.2008.11.4.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
3
|
Putignani L, Raffa S, Pescosolido R, Aimati L, Signore F, Torrisi MR, Grammatico P. Alteration of expression levels of the oxidative phosphorylation system (OXPHOS) in breast cancer cell mitochondria. Breast Cancer Res Treat 2007; 110:439-52. [PMID: 17899367 DOI: 10.1007/s10549-007-9738-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Accepted: 08/15/2007] [Indexed: 01/20/2023]
Abstract
Mitochondria are dynamic intracellular organelles playing a central role in cell metabolism by generating ATP, through the oxidative phosphorylation system (OXPHOS). Altered mitochondrial functions have been identified as causative or contributing factors in some degenerative diseases and are becoming crucial to understanding cancer mechanisms. We report on distinct expression differences between mitochondria of normal and breast-infiltrating ductal carcinoma (IDC) cells. Mitochondria isolated from HMC (human mammary carcinoma) and HMEC (human mammary epithelial cell) cultures were assayed for expression levels of the multi-protein OXPHOS complexes using Western blot and densitometric analyses. Depressed expression levels were detected for all HMC OXPHOS complexes. Drastic signal reduction was observed for the succinate-dehydrogenase complex II iron-sulphur protein SDH-B (3.38%), while decreasing was reported for the NADH-ubiquinone oxidoreductase complex I Fe-S protein 3 NDUFS3 (32.78%) and the ubiquinol-cytochrome c reductase complex III protein 2 UQCRC2 (50.34%). A significant signal dropping was detected for the ATP-synthase complex V F(1)beta subunit (18.07%). For the cytochrome-oxidase complex IV (CO), near-depletion of the mitochondrial-encoded COI (4.37%) and no apparent variation of the COIV (97.26%) subunits were observed. CO and ATP-synthase were also assayed by cryo-immunoelectron microscopy (CIEM) on unfractionated HMC and HEMC cell mitochondria. COI and F(1)beta differential expression, invariance of COIV levels were corroborated, while HMC mitochondria morphology deterioration was highlighted. MitoTracker Red and fluorescence immunolabelling merging confirmed CIEM data. MitoTracker Red and Green co-staining showed mitochondria membrane property modulation. These data describe bioenergetic and phenotypic alterations of IDC cell mitochondria, possibly providing new cancer hallmarks.
Collapse
Affiliation(s)
- Lorenza Putignani
- Medical Genetics, Experimental Medicine, University La Sapienza, S. Camillo-Forlanini Hospital, Circ. ne Gianicolense 87, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
4
|
Kim MS, Kim IC, Kim SS, Kim SK, Lee YM, Kang HS, Kweon HS, Hwang UW, Kim MK, Lee JS, Yoon YD. CDNA cloning and expression of ATP synthase subunit b from the fire-bellied frog Bombina orientalis (Anura: Discoglossidae). ACTA ACUST UNITED AC 2005; 15:196-201. [PMID: 15497442 DOI: 10.1080/10425170410001723930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We cloned the Bombina orientalis adenosine triphosphate (ATP) synthase subunit b gene from a B. orientalis oviduct cDNA library. The transcript was 997 bp long and encoded 250 amino acid residues. It showed high similarity to amphibian (84-85%), mammalian (56-62%) and invertebrate (46-50%) sequences. In phylogenetic analyses, it clustered with other amphibian sequences. This gene was highly expressed in brain, intestine and oviduct but not in muscle and liver. In this paper, we report the basic characteristics of B. orientalis ATP synthase subunit b gene.
Collapse
Affiliation(s)
- Min-Sun Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
The extrinsic and intrinsic membrane sectors of F1F0-ATPases are linked by a slender stalk 40-50 A in length. The stalk transmits the energy produced by oxidative or photosynthetic phosphorylation from the intrinsic sector, F0, to the catalytic sites in the extrinsic F1 sector. How this is achieved is unknown, but long-range conformational changes linked to transmembrane proton transport may be involved. In bacterial and chloroplast F1F0-ATPases, the stalk is probably a composite of subunits delta and epsilon, part of the gamma-subunit, and the extrinsic membrane domains of 2 subunits (identical or non-identical according to the species) that are bound to the membrane by their N-terminal regions. The stalk in the bovine mitochondrial enzyme appears to be more complex, and the gamma, delta, epsilon, OSCP, F6, b and d subunits all contribute to it. A bovine stalk complex has been assembled in vitro from bacterially expressed OSCP, F6, b and d, both in the presence and in the absence of F1-ATPase. One molecule of each of these subunits is present in the assembled complex, as there is also in each native F1F0-ATPase assembly. Providing that suitable crystals can be obtained, the stalk complex and the F1.stalk complex may permit the high resolution structure of bovine F1-ATPase to be extended into the stalk domain.
Collapse
Affiliation(s)
- J E Walker
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
6
|
Higuti T, Kawamura Y, Kuroiwa K, Miyazaki S, Tsujita H. Molecular cloning and sequence of two cDNAs for human subunit c of H(+)-ATP synthase in mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1173:87-90. [PMID: 8485160 DOI: 10.1016/0167-4781(93)90249-d] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Two cDNAs encoding different signal peptides (61 and 66 amino acid residues) and the same mature protein have been cloned from a human cDNA library with a rat subunit c cDNA. The amino acid sequence of the mature human subunit c of mitochondrial H(+)-ATP synthase was completely identical with those of the mature bovine, sheep and rat subunit c.
Collapse
Affiliation(s)
- T Higuti
- Faculty of Pharmaceutical Sciences, University of Tokushima, Japan
| | | | | | | | | |
Collapse
|