1
|
Teerawanichpan P, Krittanai P, Chauvatcharin N, Narangajavana J. Purification and characterization of rice DNA methyltransferase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:671-680. [PMID: 19401269 DOI: 10.1016/j.plaphy.2009.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 03/23/2009] [Accepted: 03/31/2009] [Indexed: 05/27/2023]
Abstract
Epigenetic modification is essential for normal development and plays important roles in gene regulation in higher plants. Multiple factors interact to regulate the establishment and maintenance of DNA methylation in plant genome. We had previously cloned and characterized DNA methyltransferase (DNA MTase) gene homologues (OsMET1) from rice. In this present study, determination of DNA MTase activity in different cellular compartments showed that DNA MTase was enriched in nuclei and the activity was remarkably increased during imbibing dry seeds. We had optimized the purification technique for DNA MTase enzyme from shoots of 10-day-old rice seedlings using the three successive chromatographic columns. The Econo-Pac Q, the Hitrap-Heparin and the Superdex-200 columns yielded a protein fraction of a specific activity of 29, 298 and 800 purification folds, compared to the original nuclear extract, respectively. The purified protein preferred hemi-methylated DNA substrate, suggesting the maintenance activity of methylation. The native rice DNA MTase was approximately 160-170 kDa and exhibited a broad pH optimum in the range of 7.6 and 8.0. The enzyme kinetics and inhibitory effects by methyl donor analogs, base analogs, cations, and cationic amines on rice DNA MTase were examined. Global cytosine methylation status of rice genome during development and in various tissue culture systems were monitored and the results suggested that the cytosine methylation level is not directly correlated with the DNA MTase activity. The purification and characterization of rice DNA MTase enzyme are expected to enhance our understanding of this enzyme function and their possible contributions in Gramineae plant development.
Collapse
Affiliation(s)
- Prapapan Teerawanichpan
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | | | | | | |
Collapse
|
2
|
Buryanov YI, Shevchuk TV. DNA methyltransferases and structural-functional specificity of eukaryotic DNA modification. BIOCHEMISTRY (MOSCOW) 2006; 70:730-42. [PMID: 16097936 DOI: 10.1007/s10541-005-0178-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Properties of the main families of mammalian, plant, and fungal DNA methyltransferases are considered. Structural-functional specificity of eukaryotic genome sequences methylated by DNA methyltransferases is characterized. The total methylation of cytosine in DNA sequences is described, as well as its relation with RNA interference. Mechanisms of regulation of expression and modulation of DNA methyltransferase activity in the eukaryotic cell are discussed.
Collapse
Affiliation(s)
- Ya I Buryanov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Pushchino Branch, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|
3
|
Abstract
Methylation of cytosine residues in DNA provides a mechanism of gene control. There are two classes of methyltransferase in Arabidopsis; one has a carboxy-terminal methyltransferase domain fused to an amino-terminal regulatory domain and is similar to mammalian methyltransferases. The second class apparently lacks an amino-terminal domain and is less well conserved. Methylcytosine can occur at any cytosine residue, but it is likely that clonal transmission of methylation patterns only occurs for cytosines in strand-symmetrical sequences CpG and CpNpG. In plants, as in mammals, DNA methylation has dual roles in defense against invading DNA and transposable elements and in gene regulation. Although originally reported as having no phenotypic consequence, reduced DNA methylation disrupts normal plant development.
Collapse
Affiliation(s)
- E. J. Finnegan
- 1Commonwealth Scientific and Industrial Research Organization, Plant Industry, P.O. Box 1600, Canberra, ACT 2601, Australia, Cooperative Research Centre for Plant Science, P.O. Box 475, Canberra, ACT 2601, Australia; e-mail: , 2Division of Biochemistry and Molecular Biology, Australian National University, Canberra, ACT 0200, Australia
| | | | | | | |
Collapse
|
4
|
Bernacchia G, Primo A, Giorgetti L, Pitto L, Cella R. Carrot DNA-methyltransferase is encoded by two classes of genes with differing patterns of expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 13:317-329. [PMID: 9680985 DOI: 10.1046/j.1365-313x.1998.00034.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In the present study, the isolation and characterization of two distinct cDNAs that code for carrot DNA (cytosine-5)-methyltransferase (DNA-METase) are reported. The screening of a cDNA library with a carrot genomic DNA fragment, previously obtained by PCR using degenerate primers, has led to the isolation of clones that belong to two distinct classes of genes (Met1 and Met2) which differ in sequence and size. Met1-5 and Met2-21 derived amino acid sequences are more than 85% identical for most of the polypeptide and completely diverge at the N-terminus. The larger size of the Met2-21 cDNA is due to the presence of nearly perfect fivefold repeat of a 171 bp sequence present only once in the Met1-5 cDNA. Northern and in situ hybridization analyses with young carrot plants and somatic embryos indicate that both genes are maximally expressed in proliferating cells (suspension cells, meristems and leaf primordia), but differ quantitatively and spatially in their mode of expression. Polyclonal antibodies were raised in rabbit using fusion proteins corresponding to the regulatory and catalytic regions of the most highly expressed gene (Met1-5). In nuclear carrot extracts, both antibodies were found to recognize a band of about 200 kDa along with some additional bands of lower size. These results provide the first direct demonstration that DNA-METases of a higher eukaryote are encoded by a gene family.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies
- Base Sequence
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/immunology
- DNA Primers/genetics
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA, Plant/genetics
- DNA, Plant/isolation & purification
- Daucus carota/enzymology
- Daucus carota/genetics
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genes, Plant
- In Situ Hybridization
- Molecular Sequence Data
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Rabbits
- Repetitive Sequences, Nucleic Acid
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- G Bernacchia
- Dipartimento di Genetica e Microbiologia, Università di Pavia, Italy
| | | | | | | | | |
Collapse
|
5
|
Roberts CJ, Selker EU. Mutations affecting the biosynthesis of S-adenosylmethionine cause reduction of DNA methylation in Neurospora crassa. Nucleic Acids Res 1995; 23:4818-26. [PMID: 8532524 PMCID: PMC307470 DOI: 10.1093/nar/23.23.4818] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A temperature-sensitive methionine auxotroph of Neurospora crassa was found in a collection of conditional mutants and shown to be deficient in DNA methylation when grown under semipermissive conditions. The defective gene was identified as met-3, which encodes cystathionine-gamma-synthase. We explored the possibility that the methylation defect results from deficiency of S-adenosylmethionine (SAM), the presumptive methyl group donor. Methionine starvation of mutants from each of nine complementation groups in the methionine (met) pathway (met-1, met-2, met-3, met-5, met-6, met-8, met-9, met-10 and for) resulted in decreased DNA methylation while amino acid starvation, per se, did not. In most of the strains, including wild-type, intracellular SAM peaked during rapid growth (12-18 h after inoculation), whereas DNA methylation continued to increase. In met mutants starved for methionine, SAM levels were most reduced (3-11-fold) during rapid growth while the greatest reduction in DNA methylation levels occurred later. Addition of 3 mM methionine to cultures of met or cysteine-requiring (cys) mutants resulted in 5-28-fold increases in SAM, compared with wild-type, at a time when DNA methylation was reduced approximately 40%, suggesting that the decreased methylation during rapid growth in Neurospora is not due to limiting SAM. DNA methylation continued to increase in a cys-3 mutant that had stopped growing due to methionine starvation, suggesting that methylation is not obligatorily coupled to DNA replication in Neurospora.
Collapse
Affiliation(s)
- C J Roberts
- Institute of Molecular Biology, University of Oregon, Eugene 97403, USA
| | | |
Collapse
|
6
|
Abstract
We have purified two distinct DNA methyltransferases from pea shoot tips and analysed their sequence specificity using synthetic oligodeoxyribonucleotide substrates and chemical sequencing methods. One methylates only CG target sequences, whereas the other methylates only CAG or CTG target sequences. We have found no evidence for methylation of the 5' cytosine in CCG target sequences either in vivo or in vitro. Using amino-acid sequence data, PCR-amplified fragments from conserved sequences and heterologous probes, we have isolated several cDNA clones that react with mRNA molecules of different sizes.
Collapse
Affiliation(s)
- S Pradhan
- Institute of Biomedical and Life Sciences, University of Glasgow, UK
| | | | | | | |
Collapse
|
7
|
Kakutani T, Jeddeloh JA, Richards EJ. Characterization of an Arabidopsis thaliana DNA hypomethylation mutant. Nucleic Acids Res 1995; 23:130-7. [PMID: 7870578 PMCID: PMC306640 DOI: 10.1093/nar/23.1.130] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have recently isolated two Arabidopsis thaliana DNA hypomethylation mutations, identifying the DDM1 locus, that cause a 70% reduction in genomic 5-methylcytosine levels [1]. Here we describe further phenotypic and biochemical characterization of the ddm1 mutants. ddm1/ddm1 homozygotes exhibited altered leaf shape, increased cauline leaf number, and a delay in the onset of flowering when compared to non-mutant siblings in a segregating population. Our biochemical characterization investigated two possible mechanisms for DNA hypomethylation. In order to see if ddm1 mutations affect DNA methyltransferase function, we compared DNA methyltransferase activities in extracts from wild-type and ddm1 mutant tissues. The ddm1 mutant extracts had as much DNA methyltransferase activity as that of the wild-type for both the CpI and CpNpG substrates suggesting that the DDM1 locus does not encode a DNA methyltransferase. Moreover, the ddm1 mutations did not affect the intracellular level of S-adenosylmethionine, the methyl group donor for DNA methylation. The possibility that the DDM1 gene product functions as a modifier of DNA methylation is discussed.
Collapse
Affiliation(s)
- T Kakutani
- Department of Biology, Washington University, St Louis, MO 63130
| | | | | |
Collapse
|
8
|
Scheidt G, Weber H, Graessmann M, Graessmann A. Are there two DNA methyltransferase gene families in plant cells? A new potential methyltransferase gene isolated from an Arabidopsis thaliana genomic library. Nucleic Acids Res 1994; 22:953-8. [PMID: 8152926 PMCID: PMC320484 DOI: 10.1093/nar/22.6.953] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Using the 1kb 3' terminal DNA fragment of the mouse methyltransferase cDNA as a probe and low stringent hybridisation conditions, a new potential methyltransferase (MTase) gene family was isolated from an Arabidopsis thaliana genomic DNA library. One clone (MTase-11), which gave the strongest signal at the Northern blot, was entirely sequenced (11483 bp) and further characterised. Under consideration of the likely open reading frames and our preliminary cDNA experiments we propose that the clone 11 gene encodes for an approximately 90 kD protein. As deduced form the DNA sequence this protein contains all conserved sequence motifs specific for the 5m cytosine MTases. MTase-11 gene expression was demonstrable in callus and during germination but not in one month old plants or in leaves.
Collapse
Affiliation(s)
- G Scheidt
- Institut für Molekularbiologie und Biochemie, Freien Universität Berlin, Germany
| | | | | | | |
Collapse
|
9
|
Houlston CE, Cummings M, Lindsay H, Pradhan S, Adams RL. DNA substrate specificity of pea DNA methylase. Biochem J 1993; 293 ( Pt 3):617-24. [PMID: 8352729 PMCID: PMC1134411 DOI: 10.1042/bj2930617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
DNA methylase, present in low-salt extracts of nuclei prepared from Pisum sativum shoot tips, methylates model DNA substrates containing CNG trinucleotides or CI dinucleotides only. The binding to the hemimethylated trinucleotide substrates is very much stronger and more persistent than the binding to the unmethylated substrates or to the hemimethylated dinucleotide substrate. When the DNA concentration is limiting, the rate of methyl-group transfer with the hemimethylated CNG substrate is much greater than that with the unmethylated CNG. However, the Vmax. is similar for the two CNG substrates. On fractionation using Q-Sepharose, two peaks of activity are seen with different relative activities using the di- and trinucleotide substrates. The relative activity with these substrates changes during purification, during plant growth and on heating at 35 degrees C as well, indicating that more than one enzyme or more than one form of the enzyme may be present.
Collapse
Affiliation(s)
- C E Houlston
- Department of Biochemistry, University of Glasgow, U.K
| | | | | | | | | |
Collapse
|
10
|
Finnegan EJ, Dennis ES. Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana. Nucleic Acids Res 1993; 21:2383-8. [PMID: 8389441 PMCID: PMC309536 DOI: 10.1093/nar/21.10.2383] [Citation(s) in RCA: 190] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A plant cytosine methyltransferase cDNA was isolated using degenerate oligonucleotides, based on homology between prokaryote and mouse methyltransferases, and PCR to amplify a short fragment of a methyltransferase gene. A fragment of the predicted size was amplified from genomic DNA from Arabidopsis thaliana. Overlapping cDNA clones, some with homology to the PCR amplified fragment, were identified and sequenced. The assembled nucleic acid sequence is 4720 bp and encodes a protein of 1534 amino acids which has significant homology to prokaryote and mammalian cytosine methyltransferases. Like mammalian methylases, this enzyme has a C terminal methyltransferase domain linked to a second larger domain. The Arabidopsis methylase has eight of the ten conserved sequence motifs found in prokaryote cytosine-5 methyltransferases and shows 50% homology to the murine enzyme in the methyltransferase domain. The amino terminal domain is only 24% homologous to the murine enzyme and lacks the zinc binding region that has been found in methyltransferases from both mouse and man. In contrast to mouse where a single methyltransferase gene has been identified, a small multigene family with homology to the region amplified in PCR has been identified in Arabidopsis thaliana.
Collapse
Affiliation(s)
- E J Finnegan
- CSIRO, Division of Plant Industry, Canberra, ACT, Australia
| | | |
Collapse
|
11
|
Finnegan EJ, Brettell RI, Dennis ES. The role of DNA methylation in the regulation of plant gene expression. EXS 1993; 64:218-61. [PMID: 8380350 DOI: 10.1007/978-3-0348-9118-9_11] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- E J Finnegan
- CSIRO, Division of Plant Industry, Canberra, ACT, Australia
| | | | | |
Collapse
|