1
|
Glennon RA. 2. Medicinal chemistry of alpha4beta2 nicotinic cholinergic receptor ligands. PROGRESS IN MEDICINAL CHEMISTRY 2004; 42:55-123. [PMID: 15003719 DOI: 10.1016/s0079-6468(04)42002-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Richard A Glennon
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Box 581 MCV Station, Richmond, VA 23298, USA
| |
Collapse
|
2
|
Romanelli MN, Gualtieri F. Cholinergic nicotinic receptors: competitive ligands, allosteric modulators, and their potential applications. Med Res Rev 2003; 23:393-426. [PMID: 12710018 DOI: 10.1002/med.10037] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Discovery of the important role played by nicotinic acetylcholine receptors (nAChRs) in several CNS disorders has called attention to these membrane proteins and to ligands able to modulate their functions. The existence of different subtypes at multiple levels has complicated the understanding of this receptor's physiological role, but at the same time has increased the efforts to discover selective compounds in order to improve the pharmacological characterization of this kind of receptor and to make the possible therapeutical use of its modulators safer. This review focuses on the structure of new ligands for nAChRs, agonists, antagonists and allosteric modulators, and on their possible applications.
Collapse
Affiliation(s)
- M Novella Romanelli
- Dipartimento di Scienze Farmaceutiche, Università di Firenze, via Gino Capponi 9, 50121 Firenze, Italy.
| | | |
Collapse
|
3
|
Sihver W, Långström B, Nordberg A. Ligands for in vivo imaging of nicotinic receptor subtypes in Alzheimer brain. ACTA NEUROLOGICA SCANDINAVICA. SUPPLEMENTUM 2001; 176:27-33. [PMID: 11261802 DOI: 10.1034/j.1600-0404.2000.00304.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The neuronal nicotinic acetylcholine receptors (nAChR) are involved in functional processes in brain including cognitive function and memory. A severe loss of the nAChRs has been detected in brain of patients with Alzheimer's disease (AD). There is a great interest to image nAChRs noninvasive for detection of receptor impairments even at a presymptomatic stage of AD as well for monitoring outcome of drug treatment. (S) [11C]Nicotine, has so far been the only nAChR ligand used in positron emission tomography (PET) studies for visualizing nAChRs in human brain. In order to develop PET/SPECT nAChRs ligands for detection of subtypes of nAChRs nicotine analogues, epibatidine and A-85380 compounds have been characterized in vitro and investigated in vivo. Epibatidine and A-85380 have been found to have higher specific signals and more favorable kinetic parameters than nicotine and its analogues. The epibatidine and A-85380 compounds can also be radiolabeled with high specific radioactivity, show affinities for the nAChRs in the pM range and readily cross the blood-brain barrier. In addition they reversibly bind to the nAChRs and show low non-specific binding and moderately fast metabolism. Due to a probably high alpha4beta2 nAChR selectivity combined with low toxicity, the A-85380 analogs presently seem to be the most promising nAChR ligand imaging of subtypes of nAChRs in human brain.
Collapse
Affiliation(s)
- W Sihver
- PET-Center/Institute of Chemistry, Uppsala University, Sweden
| | | | | |
Collapse
|
4
|
Sihver W, Nordberg A, Långström B, Mukhin AG, Koren AO, Kimes AS, London ED. Development of ligands for in vivo imaging of cerebral nicotinic receptors. Behav Brain Res 2000; 113:143-57. [PMID: 10942041 DOI: 10.1016/s0166-4328(00)00209-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) mediate a variety of brain functions. Findings from postmortem studies and clinical investigations have implicated them in the pathophysiology and treatment of Alzheimer's and Parkinson's diseases and other CNS disorders (e.g. Tourette's syndrome, epilepsy, nicotine dependence). Therefore, it ultimately might be useful to image nAChRs noninvasively for diagnosis, for studies on how changes in nAChRs might contribute to cerebral disorders, for development of therapies targeted at nAChRs, and to monitor the effects of such treatments. To date, only (S)-(-)-nicotine, radiolabeled with 11C, has been used for external imaging of nAChRs in human subjects. Since this radiotracer presents drawbacks, new ligands, with more favorable properties, have been synthesized and tested. Three general classes of compounds, namely, nicotine and its analogs, epibatidine and related compounds, and 3-pyridyl ether compounds, including A-85380, have been evaluated. Analogs of A-85380 appear to be the most promising candidates because of their low toxicity and high selectivity for the alpha4beta2 subtype of nAChRs.
Collapse
Affiliation(s)
- W Sihver
- Department of Medical Pharmacology, Karolinska Institute, Huddinge Hospital, Sweden.
| | | | | | | | | | | | | |
Collapse
|
5
|
Glennon RA, Dukat M. Central nicotinic receptor ligands and pharmacophores. PHARMACEUTICA ACTA HELVETIAE 2000; 74:103-14. [PMID: 10812946 DOI: 10.1016/s0031-6865(99)00022-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Multiple populations of pentameric nicotinic acetylcholinergic (nACh) receptors exist and several may be classified as central or neuronal. Neuronal nACh receptors, however, are primarily of the alpha 4 beta 2 and alpha 7 types, and these have been the focus of most recent investigations aimed at the development of novel agents and identification of pharmacophores. Selectivity data are limited. Furthermore, because several populations of nACh receptors might indirectly influence a given functional effect, it is difficult to discuss structure-activity relationships (SAR) in terms of differential SAR, or to formulate SAR on the basis of functional studies. For the most part, studies are limited to the formulation of structure-affinity relationships (SAFIR) for the binding of agents at nACh receptors, and for these the alpha 4 beta 2 population has been the most extensively investigated. SAFIR and newer agents are reviewed here with reference to earlier studies. Novel agents now have been identified that bind with up to 30 times higher affinity than nicotine and these are providing new insight into the understanding of nACh receptors.
Collapse
Affiliation(s)
- R A Glennon
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond 23298-0540, USA.
| | | |
Collapse
|
6
|
Discovery of ABT-594 and related neuronal nicotinic acetylcholine receptor modulators as analgesic agents. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1067-5698(00)80004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
7
|
Sihver W, Fasth KJ, Horti AG, Koren AO, Bergström M, Lu L, Hagberg G, Lundqvist H, Dannals RF, London ED, Nordberg A, Långström B. Synthesis and characterization of binding of 5-[76Br]bromo-3-[[2(S)-azetidinyl]methoxy]pyridine, a novel nicotinic acetylcholine receptor ligand, in rat brain. J Neurochem 1999; 73:1264-72. [PMID: 10461920 DOI: 10.1046/j.1471-4159.1999.0731264.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
5-[76Br]Bromo-3-[[2(S)-azetidinyl]methoxy]pyridine ([76Br]BAP), a novel nicotinic acetylcholine receptor ligand, was synthesized using [76Br]bromide in an oxidative bromodestannylation of the corresponding trimethylstannyl compound. The radiochemical yield was 25%, and the specific radioactivity was on the order of 1 Ci/micromol. The binding properties of [76Br]BAP were characterized in vitro and in vivo in rat brain, and positron emission tomography (PET) experiments were performed in two rhesus monkeys. In association experiments on membranes of the cortex and thalamus, >90% of maximal specific [76Br]BAP binding was obtained after 60 min. The dissociation half-life of [76Br]BAP was 51 +/- 6 min in cortical membranes and 56 +/- 3 min in thalamic membranes. Saturation experiments with [76Br]BAP revealed one population of binding sites with dissociation constant (K(D)) values of 36 +/- 9 and 30 +/- 9 pM in membranes of cortex and thalamus, respectively. The maximal binding site density (Bmax) values were 90 +/- 17 and 207 +/- 33 fmol/mg in membranes of cortex and thalamus, respectively. Scatchard plots were nonlinear, and the Hill coefficients were <1, suggesting the presence of a lower-affinity binding site. In vitro autoradiography studies showed that binding of [76Br]BAP was high in the thalamus and presubiculum, moderate in the cortex and striatum, and low in the cerebellum and hippocampus. A similar pattern of [76Br]BAP accumulation was observed by ex vivo autoradiography. In vivo, binding of [76Br]BAP in whole rat brain was blocked by preinjection of (S)(-)-nicotine (0.3 mg/kg) by 27, 52, 68, and 91% at survival times of 10, 25, 40, 120, and 300 min, respectively. In a preliminary PET study in rhesus monkeys, the highest [76Br]BAP uptake was found in the thalamus, and radioactivity was displaceable by approximately 60% with cytisine and by 50% with (S)(-)-nicotine. The data of this study indicate that [76Br]BAP is a promising radioligand for the characterization of nicotinic acetylcholine receptors in vivo.
Collapse
Affiliation(s)
- W Sihver
- PET Centre Uppsala University, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Schmitt JD, Sharples CG, Caldwell WS. Molecular recognition in nicotinic acetylcholine receptors: the importance of pi-cation interactions. J Med Chem 1999; 42:3066-74. [PMID: 10447950 DOI: 10.1021/jm990093z] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We explore the significance of pi-cation interactions in the binding of ligands to nicotinic acetylcholine receptors. Specifically, the Austin method of semiempirical molecular orbital theory is utilized to estimate the interaction of aromatic amino acid side chains with the cation-containing heterocyclic ring fragments of nicotinic ligands. Variational interaction energies (E(i)) of side chain-ligand fragment pairs are shown to be distance-dependent and follow a Morse-like potential function. The tryptophan side chain shows the most pronounced interaction with the cation fragments, followed by tyrosine and phenylalanine. For a given side chain, cationic fragments exhibit characteristically different E(i) profiles, with the azabicyclo[2.2.1]heptane fragment of the potent nicotinic ligand epibatidine eliciting the greatest interaction energy of the study set. Most significantly, the minimum energy values calculated for numerous fragments correlate with the binding affinity of the parent ligands- we show this to be the case for heteropentameric (alpha4beta2) and homopentameric (alpha7) nicotinic acetylcholine receptor subtypes. Furthermore, intermolecular distances corresponding to the Morse-like potential minimum also correlate with high-affinity binding. A number of parallel calculations were conducted at the Hartree-Fock 6-31G ab initio level of theory in an effort to substantiate these findings.
Collapse
Affiliation(s)
- J D Schmitt
- Research and Development, Targacept Inc., Bowman Gray Technical Center, 950 Reynolds Boulevard, Winston-Salem, North Carolina 27105, USA
| | | | | |
Collapse
|
9
|
Sihver W, Fasth KJ, Ogren M, Lundqvist H, Bergström M, Watanabe Y, Långström B, Nordberg A. In vivo positron emission tomography studies on the novel nicotinic receptor agonist [11C]MPA compared with [11C]ABT-418 and (S)(-)[11C]nicotine in rhesus monkeys. Nucl Med Biol 1999; 26:633-40. [PMID: 10587101 DOI: 10.1016/s0969-8051(99)00034-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The novel 11C-labeled nicotinic agonist (R,S)-1-[11C]methyl-2(3-pyridyl)azetidine ([11C]MPA) was evaluated as a positron emission tomography (PET) ligand for in vivo characterization of nicotinic acetylcholine receptors in the brain of Rhesus monkeys in comparison with the nicotinic ligands (S)-3-methyl-5-(1-[11C]methyl-2-pyrrolidinyl)isoxazol ([11C]ABT-418) and (S)(-)[11C]nicotine. The nicotinic receptor agonist [11C]MPA demonstrated rapid uptake into the brain to a similar extent as (S)(-) [11C]nicotine and [11C]ABT-418. When unlabeled (S)(-)nicotine (0.02 mg/kg) was administered 5 min before the radioactive tracers, the uptake of [11C]MPA was decreased by 25% in the thalamus, 19% in the temporal cortex, and 11% in the cerebellum, whereas an increase was found for the uptake of (S)(-)[11C]nicotine and [11C]ABT-418. This finding indicates specific binding of [11C]MPA to nicotinic receptors in the brain in a simple classical displacement study. [11C]MPA seems to be a more promising radiotracer than (S)(-)[11C]nicotine or [11C]ABT-418 for PET studies to characterize nicotinic receptors in the brain.
Collapse
Affiliation(s)
- W Sihver
- Subfemtomole Biorecognition Project, Japan Science and Technology Corporation, Osaka.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhang X, Gong ZH, Fasth KJ, Långström B, Nordberg A. Interaction of the nicotinic agonist (R,S)-3-pyridyl-1-methyl-2-(3-pyridyl)-azetidine (MPA) with nicotinic acetylcholine receptor subtypes expressed in cell lines and rat cortex. Neurochem Int 1998; 32:435-41. [PMID: 9676742 DOI: 10.1016/s0197-0186(97)00119-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The interaction of the nicotinic agonist (R,S)-3-pyridyl-1-methyl-2-(3-pyridyl)-azetidine (MPA) with different nicotinic acetylcholine receptor (nAChR) subtypes was studied in cell lines and rat cortex. MPA showed an affinity (Ki = 1.21 nM) which was higher than anatoxin-a > (-)-nicotine > (+)-[R]nornicotine > (-)-[S]nornicotine > and (+)-nicotine, but lower than cytisine (Ki = 0.46 nM) in competing for (-)-[3H]nicotine binding in M10 cells, which stably express the recombinant alpha4beta2 nAChR subtype. A one-binding site model was observed in all competing experiments between (-)-[3H]nicotine binding and each of the agonists studied in M10 cells. MPA showed a 13-fold higher affinity for (-)-[3H]nicotine binding sites compared to the [3H]epibatidine binding sites in rat cortical membranes. In human neuroblastoma SH-SY5Y cells, which predominantly express the alpha3 nAChR subunit mRNA, MPA displaced [3H]epibatidine binding from a single population of the binding sites with an affinity in the same nM range as that observed MPA in displacing [3H]epibatidine binding in rat cortical membranes. Chronic treatment of M10 cells with MPA significantly up-regulated the number of (-)-[3H]nicotine binding sites in a concentration dependent manner. Thus MPA appears to have higher affinity to alpha4-subunit containing receptor subtype than alpha3-subunit containing receptor subtype of nAChRs. Furthermore MPA binds to alpha4beta2 receptor subtype with higher affinity than (-)-nicotine and behaves, opposite to cytisine, as a fult agonist in up-regulating the number of nAChRs.
Collapse
Affiliation(s)
- X Zhang
- Department of Clinical Neuroscience and Family Medicine, Karolinska Institute, Huddinge University Hospital, Sweden
| | | | | | | | | |
Collapse
|
11
|
Dukat M, Fiedler W, Dumas D, Damaj I, Martin BR, Rosecrans JA, James JR, Glennon RA. Pyrrolidine-modified and 6-substituted analogs of nicotine: A structure—affinity investigation. Eur J Med Chem 1996. [DOI: 10.1016/s0223-5234(97)89850-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Holladay MW, Lebold SA, Lin NH. Structure - activity relationships of nicotinic acetylcholine receptor agonists as potential treatments for dementia. Drug Dev Res 1995. [DOI: 10.1002/ddr.430350402] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Lerner-Marmarosh N, Kende AS, Wang DX, Abood LG. Probing ion channels and recognition sites of neuronal nicotinic cholinergic receptors with novel nicotine affinity and other ligands. Ann N Y Acad Sci 1995; 757:120-32. [PMID: 7611669 DOI: 10.1111/j.1749-6632.1995.tb17469.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- N Lerner-Marmarosh
- Department of Pharmacology, University of Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
14
|
Lukas RJ, Bencherif M. Heterogeneity and regulation of nicotinic acetylcholine receptors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1992; 34:25-131. [PMID: 1587717 DOI: 10.1016/s0074-7742(08)60097-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- R J Lukas
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona 85013
| | | |
Collapse
|
15
|
Abood L, Banerjee S, Kanne D. Sites, Mechanisms, and Structural Characteristics of the Brain's Nicotine Receptor. ACTA ACUST UNITED AC 1989. [DOI: 10.1016/s0899-3289(18)30003-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|