1
|
Abcb1 in Pigs: Molecular cloning, tissues distribution, functional analysis, and its effect on pharmacokinetics of enrofloxacin. Sci Rep 2016; 6:32244. [PMID: 27572343 PMCID: PMC5004175 DOI: 10.1038/srep32244] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 08/04/2016] [Indexed: 01/29/2023] Open
Abstract
P-glycoprotein (P-gp) is one of the best-known ATP-dependent efflux transporters, contributing to differences in pharmacokinetics and drug-drug interactions. Until now, studies on pig P-gp have been scarce. In our studies, the full-length porcine P-gp cDNA was cloned and expressed in a Madin-Darby Canine Kidney (MDCK) cell line. P-gp expression was then determined in tissues and its role in the pharmacokinetics of oral enrofloxacin in pigs was studied. The coding region of pig Abcb1 gene was 3,861 bp, encoding 1,286 amino acid residues (Mw = 141,966). Phylogenetic analysis indicated a close evolutionary relationship between porcine P-gp and those of cow and sheep. Pig P-gp was successfully stably overexpressed in MDCK cells and had efflux activity for rhodamine 123, a substrate of P-gp. Tissue distribution analysis indicated that P-gp was highly expressed in brain capillaries, small intestine, and liver. In MDCK-pAbcb1 cells, enrofloxacin was transported by P-gp with net efflux ratio of 2.48 and the efflux function was blocked by P-gp inhibitor verapamil. High expression of P-gp in the small intestine could modify the pharmacokinetics of orally administrated enrofloxacin by increasing the Cmax, AUC and Ka, which was demonstrated using verapamil, an inhibitor of P-gp.
Collapse
|
2
|
Zahner D, Alber J, Petzinger E. Cloning and heterologous expression of the ovine (Ovis aries) P-glycoprotein (Mdr1) in Madin-Darby canine kidney (MDCK) cells. J Vet Pharmacol Ther 2010; 33:304-11. [PMID: 20557448 DOI: 10.1111/j.1365-2885.2009.01141.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
P-glycoprotein (P-gp) plays a crucial role in the multidrug resistance of pathogenic helminths in sheep (Ovis aries) as well as in antiparasitic drug pharmacokinetics in the host. We cloned sheep P-gp cDNA and expressed it stably in Madin-Darby canine kidney (MDCK) cells. The open reading frame consists of 3858 nucleotides coding for a 1285 amino acids containing protein. The sequence shows high homology to the orthologs of other mammalian species, especially cattle. Both ruminant DNA sequences show a 9 bp insertion that is lacking in all other investigated sequences. Expressed in MDCK cells, the protein displays a size of 170 kDa on Western analysis. Transfection of MDCK cells with sheep P-gp resulted in 10- to 50-fold resistance to the cytotoxic P-gp substrates colchicin and daunorubicin, and in reduced digoxin accumulation.
Collapse
Affiliation(s)
- D Zahner
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Giessen, Germany.
| | | | | |
Collapse
|
3
|
Abstract
Taxol (paclitaxel) and Taxotere (docetaxel) are currently considered to be among the most important anticancer drugs in cancer chemotherapy. The anticancer activity of these drugs is ascribed to their unique mechanism of action, i.e., causing mitotic arrest in cancer cells, leading to apoptosis through inhibition of the depolymerization of microtubules. Although both paclitaxel and docetaxel possess potent antitumor activity, treatment with these drugs often results in a number of undesirable side effects, as well as multidrug resistance (MDR). Therefore, it has become essential to develop new anticancer agents with superior pharmacological properties, improved activity against various classes of tumors, and fewer side effects. This paper describes an account of our research on the chemistry of paclitaxel and taxoid anticancer agents at the biomedical interface, including: 1. The structure-activity relationship (SAR) study of taxoids leading to the development of the "second-generation" taxoids, which possess exceptional activity against drug-resistant cancer cells expressing the MDR phenotype. 2. Development of fluorinated taxoids to study the bioactive conformation of paclitaxel and photoaffinity labeling taxoids for mapping of the drug-binding domain on both microtubules and P-glycoprotein. 3. The synthesis of novel macrocyclic taxoids for the investigation into the common pharmacophore for microtubule stabilizing anticancer agents.
Collapse
Affiliation(s)
- M L Miller
- Department of Chemistry, State University of New York at Stony Brook, 11794-3400, USA
| | | |
Collapse
|
4
|
Ruiz-Gómez MJ, Souviron A, Martínez-Morillo M, Gil L. P-glycoprotein, glutathione and glutathione S-transferase increase in a colon carcinoma cell line by colchicine. J Physiol Biochem 2000; 56:307-12. [PMID: 11321524 DOI: 10.1007/bf03179798] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The acquisition of resistance to anticancer agents used in chemotherapy is the main cause of treatment failure in malignant disorders, provoking tumours to become resistant during treatment, although they initially respond to it. The main multidrug resistance (MDR) mechanism in tumour cells is the expression of P-gly-coprotein (P-gly), that acts as an ATP-dependent active efflux pump of chemotherapeutic agents. Furthermore, an increased detoxification of compounds mediated by high levels of glutathione (GSH) and glutathione S-transferase (GST), has been found in resistant cells. We developed a study aiming to evaluate the evolution of the main drug resistance markers in tumour cells: P-gly, GSH and GST, during the acquisition of resistance to colchicine, for the purpose of studying the adaptation process and its contribution to the MDR phenomenon. A human colon adenocarcinoma cell line was exposed to colchicine during 82 days, being P-gly, GSH levels and GST activity evaluated by flow cytometry, spectrofluorimetry and spectrophotometry, during exposure time. P-gly and GSH levels increased gradually during the exposure to colchicine, reaching 2.35 and 3.21 fold each. On day 82, GST activity increased 1.84 fold at the end of the exposure period. Moreover, an increment in drug cross-resistance was obtained that ranges from 2.62 to 5.22 fold for colchicine, vinblastine, vincristine and mitomycin C. The increments obtained in P-gly, GSH and GST could probably contribute to the MDR phenomenon in this human colon adenocarcinoma cell line.
Collapse
Affiliation(s)
- M J Ruiz-Gómez
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Spain
| | | | | | | |
Collapse
|
5
|
Ruiz Gómez MJ, Gil L, Souviron A, Martínez Morillo M. Multidrug resistance increment in a human colon carcinoma cell line by colchicine. J Physiol Biochem 2000; 56:33-8. [PMID: 10879679 DOI: 10.1007/bf03179774] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The most important mechanism in drug resistance is the multidrug resistance (MDR) phenomenon. It is possible to select MDR cells by in vitro exposure to cytotoxic agents. The resistance is due to the hyperexpression of the P-glycoprotein (P-Gp) that take drugs out from the cells. In this study, a colchicine resistant subline (HCA-2/1cch) was selected from a human colon adenocarcinoma after a short period of drug exposure, as an in vitro model of drug resistance selection. These cells showed cross-resistance to other drugs, which were not present in the medium during selection. The relative resistance was 3.32 for colchicine, 3.15 for vinblastine, 2.62 for vincristine and 5.22 for mitomycin C. P-glycoprotein levels were assayed by flow cytometry. It was found that a significant increase of 2.35 and 1.59 had occurred in the peak and mean channel of fluorescence, respectively, indicating an increment of P-glycoprotein expression in relation to the parental line. Moreover, verapamil (10 microg/ml) produced a partial reversion of multidrug resistance. The sensitisation rates were 7.41 for colchicine, 1.25 for vinblastine, 2.36 for vincristine and 1.17 for mitomycin C. The data obtained suggest that colchicine exposure period (10 weeks) and dose (0.5 microg/ml) assayed were sufficient to produce an increment in multidrug resistance. This resistance could be due to higher level of P-Gp expression.
Collapse
Affiliation(s)
- M J Ruiz Gómez
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Spain
| | | | | | | |
Collapse
|
6
|
Recent advances in the medicinal chemistry of taxoid anticancer agents. ADVANCES IN MEDICINAL CHEMISTRY 1999. [DOI: 10.1016/s1067-5698(99)80004-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Stride BD, Grant CE, Loe DW, Hipfner DR, Cole SP, Deeley RG. Pharmacological characterization of the murine and human orthologs of multidrug-resistance protein in transfected human embryonic kidney cells. Mol Pharmacol 1997; 52:344-53. [PMID: 9281595 DOI: 10.1124/mol.52.3.344] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Overexpression of the human multidrug-resistance protein (MRP) causes a form of multidrug resistance similar to that conferred by P-glycoprotein, although the two proteins are only distantly related. In contrast to P-glycoprotein, human MRP has also been shown to be a primary active transporter of a structurally diverse range of organic anionic conjugates, some of which may be physiological substrates. At present, the mechanism by which MRP transports these compounds and mediates multidrug resistance is not understood. With the objective of developing an animal model for studies on the normal functions of MRP and its ability to confer multidrug resistance in vivo, we recently cloned the murine ortholog of MRP (mrp). To assess the degree of functional conservation between mrp and MRP, we directly compared the drug cross-resistance profiles they confer when transfected into human embryonic kidney cells, as well as their ability to actively transport leukotriene C4, 17beta-Estradiol 17beta-(D-glucuronide), and vincristine; mrp and MRP conferred similar drug resistance profiles, with the exception that only MRP conferred resistance to the anthracyclines tested. Consistent with these findings, accumulation of [3H]vincristine and [3H]VP-16 was decreased, and efflux of [3H]vincristine was increased in both murine and human MRP-transfected cell populations, whereas only human MRP-transfected cells displayed decreased accumulation and increased efflux of [3H]daunorubicin. Membrane vesicles derived from both transfected cell populations transported leukotriene C4 in an ATP-dependent manner with comparable efficiency, although the efficiency of 17beta-estradiol 17beta-(D-glucuronide) transport was somewhat higher with MRP transfectants. ATP-dependent transport of vincristine was also observed with vesicles from mrp and MRP transfectants but only in the presence of glutathione. These studies reveal intrinsic differences between the murine and human MRP orthologs with respect to their ability to confer resistance to a major class of chemotherapeutic drugs.
Collapse
Affiliation(s)
- B D Stride
- Cancer Research Laboratories,Queen's University, Kingston, Canada K7L 3N6
| | | | | | | | | | | |
Collapse
|
8
|
Baggetto LG. Biochemical, genetic, and metabolic adaptations of tumor cells that express the typical multidrug-resistance phenotype. Reversion by new therapies. J Bioenerg Biomembr 1997; 29:401-13. [PMID: 9387101 DOI: 10.1023/a:1022459100409] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Among the genetic and metabolic alterations that cancer cells undergo, several allow their survival under extreme environmental conditions. The resulting aberrant metabolism is compatible with tumor progression at the expenses of high energy needs, especially for maintaining high division rate. When treated with chemotherapeutic drugs many cancer cells take advantage of their ability to develop a resistance phenotype, as part of an adaptative mechanism. Two main actors of this multidrug phenotype (MDR) are represented by the P-glycoprotein and by the more recently discovered multidrug-resistance associated protein (MRP), two membrane proteins of the ABC superfamily of transporters that can extrude chemotherapeutic drugs under an ATP-dependent mechanism. We will briefly review the major metabolic aberrations that several cancers develop, followed by the molecular, genetic, structural, and functional aspects related mainly to P-glycoprotein, with a concern for the regulation of mdr gene expression. We will point out the role that membrane cholesterol may play in the MDR phenotype, relate this phenotype to bioenergetic considerations, and review the ways of modulating it by the use of new therapeutic approaches.
Collapse
|
9
|
Abstract
Mammalian cells that have undergone gene amplification and/or gene rearrangement have been used as resources to gain insight into the questions of chromosome structure and dynamics. The multidrug resistant murine cell line J7.V2-1 has been shown previously to contain two distinct forms of the highly amplified mdr2 gene, a member of the mouse gene family responsible for the multidrug resistant (MDR) phenotype [Kirschner, L. S. (1995) DNA Cell Biol. 14, 47-59]. Characterization of both forms of the gene revealed that one form corresponded to the wild-type structure of the gene, whereas the other represented a rearrangement. Investigation of this altered gene demonstrated a deletion of 1.6 kb of the wild-type sequence, and replacement of this region with a poly(AT) tract that appears to have been generated de novo. Analysis of the native sequence in this region demonstrated the absence of repetitive elements, but was notable for the presence of two long stretches of polypurine: polypyrimidine strand asymmetry. Analysis of mdr2 transcripts in this cell line revealed that nearly all of the mRNA is transcribed from the rearranged form of the gene. This message is unable to code for a functional mdr2 gene product, owing to a deletion of the fourth exon during this event. Mechanisms of the rearrangement, as well as the significance of this curious effect on transcription, are discussed.
Collapse
Affiliation(s)
- L S Kirschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
10
|
Affiliation(s)
- D W Loe
- Cancer Research Laboratories, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
11
|
Chao CC. Selective drug efflux in multidrug-resistant immunoblastic B lymphoma cells with overexpressed P-glycoprotein. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 1996; 1:63-72. [PMID: 21781664 DOI: 10.1016/1382-6689(95)00010-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Multidrug-resistant (MDR) sublines of the immunoblastic B lymphoma cell line were established by sequentially selecting in increasing concentrations of vincristine or adriamycin. The vincristine- and adriamycin-resistant cell lines, HOB1/VCR and HOB1/ADR, respectively, demonstrated resistance to a wide spectrum of chemotherapeutic agents including MDR drugs (Vinca alkaloids and anthracycline), antimicrotubule drugs (colchicine), and DNA-damaging agents (cisplatin and mitomycin C). The expression of human mdrl gene, as analyzed by Western blotting and reverse transcription-polymerase chain reaction (RT-PCR), revealed a 10-15-fold overexpression in both drug-resistant cell lines. Drug accumulation analysis demonstrated reduced accumulation of vincristine but not adriamycin in HOB1/VCR and HOB1/ADR cell lines. Inhibition of vincristine resistance was observed in both cell lines by verapamil, associated with restoration of drug accumulation, suggesting that acquired resistance in these cells is mainly due to P-glycoprotein. The drug accumulation was also examined in two series of previously characterized adriamycin-selected MDR colon adenocarcinoma cells and vincristin-selected non-MDR lung cancer cells. These studies demonstrated that immunoblastic B lymphoma cells selected for vincristine or adriamycin resistance preferentially develop P-glycoprotein-mediated vincristine efflux which plays a pivotal role in vincristine resistance. In contrast, these cells did not elevate adriamycin efflux, suggesting an additional mechanism responsible for adriamycin resistance.
Collapse
Affiliation(s)
- C C Chao
- Tumor Biology Laboratory, Department of Biochemistry, Chang Gung Medical College, Taoyuan, Taiwan 33332, Taiwan, ROC
| |
Collapse
|
12
|
Versantvoort CH, Bagrij T, Wright KA, Twentyman PR. On the relationship between the probenecid-sensitive transport of daunorubicin or calcein and the glutathione status of cells overexpressing the multidrug resistance-associated protein (MRP). Int J Cancer 1995; 63:855-62. [PMID: 8847145 DOI: 10.1002/ijc.2910630617] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cells exposed to calcein acetoxymethyl ester (calcein AM) in the growth medium become fluorescent following cleavage of calcein AM by cellular esterases to produce the fluorescent derivative calcein. It has previously been shown by others that multidrug resistant cells which overexpress P-glycoprotein accumulate much less fluorescent calcein than the corresponding parental cells. We have now examined the transport of calcein in multidrug resistant cells which overexpress an alternative transporter, the multidrug resistance-associated protein (MRP). Accumulation of calcein fluorescence was greatly reduced in the MRP-overexpressing human lung cancer cell lines COR-L23/R and MOR/R compared with their parental lines. Energy depletion resulted in a considerably increased accumulation in the resistant lines. Treatment of resistant cells with buthionine sulfoximine (BSO), which depletes cellular glutathione (GSH), did not affect calcein accumulation, in marked contrast to our previous results for daunorubicin or the fluorescent probe rhodamine 123. Genistein, verapamil, cyclosporin A and ouabain were also each able to modify, to some extent, accumulation of daunorubicin, whilst having essentially no effect on calcein accumulation. However, the organic anion transport inhibitor probenecid was able to increase accumulation of both calcein and daunorubicin in the resistant cells. Genistein and verapamil treatment preferentially reduced the GSH content of resistant cells, whilst probenecid did not. However, probenecid caused a clear decrease in release of GSH from resistant cells into the medium.
Collapse
Affiliation(s)
- C H Versantvoort
- Clinical Oncology and Radiotherapeutics Unit, Medical Research Council, Cambridge, UK
| | | | | | | |
Collapse
|
13
|
Pantazis P. The water-insoluble camptothecin analogues: promising drugs for the effective treatment of haematological malignancies. Leuk Res 1995; 19:775-88. [PMID: 8551794 DOI: 10.1016/0145-2126(95)00048-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
After failing to exhibit benefits in clinical studies with cancer patients in the early 1970s, camptothecin (CPT) and its water-insoluble analogues are re-emerging as promising drugs with multiple actions in the treatment of human haematological malignancies. CPT analogues interfere with the mechanism of action of the nuclear enzyme topoisomerase I, while the cells progress through the S-phase of the cell cycle and this results in cell death by apoptosis. Modulations of topoisomerase I phosphorylation may indirectly modulate the cytotoxic activity of CPT analogues. In vitro, CPT analogues have exhibited increased or unaltered killing activity against leukaemia cells resistant to epipodophyllotoxins, anthracyclines, anthracenediones, and Vinca alkaloids, while development of resistance to CPT analogues renders leukaemia and lymphoma cells more sensitive to topoisomerase II-directed drugs, inducers of cell differentiation, and immunotoxins. Oral administration of the CPT analogues has circumvented the inconvenience of solubility of these drugs. Metabolic conversion of the CPT analogue 9-nitro-CPT to equally or more potent 9-amino-CPT practically makes unnecessary treatment of the patient with 9-amino-CPT, which, in addition, is costlier to prepare than 9-nitro-CPT. Considering the therapeutic, economic and handling viewpoints, the overall conclusion is that the water-insoluble CPT analogues are very promising antileukaemia/antilymphoma agents that warrant further preclinical and clinical studies.
Collapse
Affiliation(s)
- P Pantazis
- Stehlin Foundation for Cancer Research, St. Joseph Hospital, Houston, Texas, USA
| |
Collapse
|
14
|
Chao CC. Lack of elevated drug efflux in adriamycin-resistant immunoblastic B lymphoma cells with mdr1 overexpression. FEBS Lett 1995; 373:285-90. [PMID: 7589484 DOI: 10.1016/0014-5793(95)01063-k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A multidrug-resistant (MDR) subline of the immunoblastic B lymphoma cell line was established by sequentially selecting in increasing concentrations of adriamycin. The adriamycin-resistant cell line (HOB1/ADR) demonstrated resistance to a wide spectrum of chemotherapeutic agents including MDR drugs (Vinca alkaloids and anthracycline), antimicrotubule drug (colchicine), and DNA-damaging agents (cisplatin and mitomycin C). The expression of human mdr1 gene, as analyzed by RT-PCR and Western blotting, revealed a 13-15-fold increase in resistant cells. Unexpectedly, HOB1/ADR cells demonstrated a lack of reduced accumulation and of enhanced efflux of adriamycin. More than 60% adriamycin was effluxed at the same rate in both cell lines within 10 min. In contrast, the initial rate of vincristine accumulation was reduced by 3 fold in this resistant cell line. The maximal level of vincristine accumulation was 50% lower in the resistant cells than the parental cells. The maximal efflux rate was enhanced by 5 fold in the resistant cells. Inhibition of vincristine resistance by verapamil associated with restoration of drug accumulation, suggesting that acquired resistance in these cells is due to P-glycoprotein. These studies demonstrated that immunoblastic B lymphoma cells selected for adriamycin resistance preferentially developed P-glycoprotein-mediated vincristine efflux which plays an important role in vincristine resistance. In contrast, the resistant cells did not elevate adriamycin efflux, suggesting an additional mechanism responsible for adriamycin resistance.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Antineoplastic Agents/pharmacology
- Base Sequence
- Blotting, Western
- Cell Division/drug effects
- Doxorubicin/pharmacokinetics
- Doxorubicin/pharmacology
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/genetics
- Gene Dosage
- Gene Expression/genetics
- Humans
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Molecular Sequence Data
- Phenotype
- Polymerase Chain Reaction
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Tumor Cells, Cultured
- Verapamil/pharmacology
- Vincristine/pharmacokinetics
- Vincristine/pharmacology
Collapse
Affiliation(s)
- C C Chao
- Department of Biochemistry, Chang Gung Medical College, Taoyuan, Taiwan, Republic of China
| |
Collapse
|
15
|
Kirschner LS. Amplification of the murine mdr2 gene and a reconsideration of the structure of the murine mdr gene locus. DNA Cell Biol 1995; 14:47-59. [PMID: 7832992 DOI: 10.1089/dna.1995.14.47] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A common feature of cells selected in vitro for the multidrug resistance (MDR) phenotype is the amplification and concomitant overexpression of the mdr genes. In murine macrophage-like J774.2-derived MDR cell lines, there is a good correlation between levels of amplification and expression for the mdr1b gene, but not for the other two gene family members, mdr1a and mdr2. To understand this phenomenon better, a study of the amplification and expression of the mdr2 gene was undertaken. Southern blotting of genomic DNAs from a series of six MDR cell lines revealed that five of these lines had 5'-end amplification of mdr2, whereas only three contained 3'-end amplification. The analysis also suggested the involvement of a recombination hot-spot in this phenomenon. Despite the observation that the ratio between the number of copies of the 5' and 3' ends of the gene differs among cell lines, the ratio of 5' to 3' end transcription of mdr2 was approximately 1 in all cell lines. An analysis of promoter methylation in MDR cell lines demonstrated that this mechanism may play a role in regulating the transcription of mdr2, but not of mdr1b. Long-range mapping of the mdr locus in parental and amplified cell lines suggested that the three mdr genes are oriented in the same direction, and also revealed the presence of a number of rearrangement events. Models for the murine mdr gene locus in wild-type cells and in a cell line containing a rearrangement are presented.
Collapse
Affiliation(s)
- L S Kirschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
16
|
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/physiology
- ATP-Binding Cassette Transporters/physiology
- Amino Acid Sequence
- Animals
- Antineoplastic Agents/pharmacology
- Biological Transport, Active
- Cricetinae
- Drug Resistance, Multiple/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Glycosylation
- Humans
- Mice
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Neoplasms/drug therapy
- Neoplasms/genetics
- Phosphorylation
- Protein Processing, Post-Translational
Collapse
Affiliation(s)
- L M Greenberger
- Lederle Laboratories, Department of Oncology and Tumor Immunology, Pearl River, NY 07666
| | | | | |
Collapse
|
17
|
Orr GA, Han EK, Browne PC, Nieves E, O'Connor BM, Yang CP, Horwitz SB. Identification of the major phosphorylation domain of murine mdr1b P-glycoprotein. Analysis of the protein kinase A and protein kinase C phosphorylation sites. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74570-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
18
|
Brown PC, Thorgeirsson SS, Silverman JA. Cloning and regulation of the rat mdr2 gene. Nucleic Acids Res 1993; 21:3885-91. [PMID: 8103593 PMCID: PMC309915 DOI: 10.1093/nar/21.16.3885] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have cloned the complete cDNA encoding the rat mdr2 gene by a combination of library screening and the polymerase chain reaction. The sequence of rat mdr2 cDNA is highly similar to other members of the mdr gene family but the initiation of transcription, tissue distribution and regulation of expression of rat mdr2 diverge from the other isoforms. Primer extension analysis showed rat mdr2 mRNA to have a major transcription start point at -277 and a minor one at approximately -518. We constructed gene specific probes for rat mdr2 and mdr1b and compared the expression patterns of these two genes. The highest expression of mdr2 mRNA was in the muscle, heart, liver and spleen. Both mdr2 and 1b mRNA levels were elevated in the livers of rats treated with CCl4 or following partial hepatectomies although the time course of induction of each gene differed. Mdr1b increased by 12 to 24 hours while mdr2 did not increase until 48 hours. Treatment of isolated hepatocytes or RC3 cells with cycloheximide did not effect mdr2 mRNA. In contrast, mdr1b expression was increased. These data suggest that rat mdr2, unlike mdr1b, is not regulated by a negative trans-acting protein factor.
Collapse
Affiliation(s)
- P C Brown
- National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|
19
|
Yu L, Cohen D, Piekarz R, Horwitz S. Three distinct nuclear protein binding sites in the promoter of the murine multidrug resistance mdr1b gene. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53206-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Piekarz R, Cohen D, Horwitz S. Progesterone regulates the murine multidrug resistance mdr1b gene. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)52997-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
21
|
Hill BT. Differing patterns of cross-resistance resulting from exposures to specific antitumour drugs or to radiation in vitro. Cytotechnology 1993; 12:265-88. [PMID: 7765329 DOI: 10.1007/bf00744668] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This article reviews the patterns of cross-resistance identified in various P-glycoprotein-mediated and non-P-glycoprotein-mediated drug resistant mammalian tumour cell lines. The differing patterns of cross-resistance and the variable levels of resistance expressed are summarised and discussed. Although the mechanism by which P-glycoprotein can recognise and transport a large group of structurally-unrelated substrates remains to be defined, the recent evidence indicating that membrane associated domains participate in substrate recognition and binding is summarised, and other possible explanations for these variable cross-resistance patterns are considered. Amongst the non-P-glycoprotein-overexpressing multidrug resistant cell lines, two subsets are clearly identifiable, one lacking and the other expressing cross-resistance to the Vinca alkaloids. Resistance mechanisms implicated in these various sublines and possible explanations for their differing levels and patterns of cross-resistance are summarised. Clinical resistance is identified in patients following treatment not only with antitumour drugs, but also after radiotherapy. Experimental data providing a biological basis for this observation are summarised. A distinctive multiple drug resistance phenotype has been identified in tumour cells following exposure in vitro to fractionated X-irradiation characterised by: the expression of resistance to the Vinca alkaloids and the epipodophyllotoxins but not the anthracyclines and overexpression of P-glycoprotein which is post-translationally regulated, but without any concomitant overexpression of P-glycoprotein mRNA. Finally, the possible clinical relevance of these variable patterns of cross-resistance to the antitumour drugs commonly used in the clinic is considered.
Collapse
Affiliation(s)
- B T Hill
- Laboratory of Cellular Chemotherapy, Imperial Cancer Research Fund, London, UK
| |
Collapse
|