Grosman C, Mariano MI, Bozzini JP, Reisin IL. Properties of two multisubstate Cl- channels from human syncytiotrophoblast reconstituted on planar lipid bilayers.
J Membr Biol 1997;
157:83-95. [PMID:
9141361 DOI:
10.1007/s002329900218]
[Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We describe the first successful reconstitution of placental ionic channels on planar lipid bilayers. An apical plasma membrane-enriched vesicle fraction from human syncytiotrophoblast at term was prepared by following isotonic agitation, differential centrifugation, and Mg2+-induced selective precipitation of nonapical membranes, and its purity was assessed by biochemical and morphological marker analysis. We have already reported that, unlike previous patch-clamp studies, nonselective cation channels were incorporated in most cases, a result consistent with the higher permeability for cations as compared with Cl- and with the low apical membrane potential difference at term revealed by fluorescent probe partition studies, and microelectrode techniques. In this paper, we report that Cl--selective channels were incorporated in 4% of successful reconstitutions (14 out of 353) and that their analysis revealed two types of activity. One of them was consistent with a voltage-dependent, 100-pS channel while the other was consistent with the lateral association of 47-pS conductive units, giving rise to multibarrelled, DIDS-sensitive channels of variable conductance (300 to 650 pS). The latter displayed a very complex behavior which included cooperative gating of conductive units, long-lived substates, voltage-dependent entry into an apparent inactivated state, and flickering activity. The role of the reported Cl- channels in transplacental ion transport and/or syncytium homeostasis remains to be determined.
Collapse