1
|
Sarrazin SLF, Bourdineaud JP, Maia JGS, Mourão RHV, Oliveira RB. Antifungal chemosensitization through induction of oxidative stress: A model for control of candidiasis based on the Lippia origanoides essential oil. AN ACAD BRAS CIENC 2024; 96:e20230532. [PMID: 38597491 DOI: 10.1590/0001-3765202420230532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/07/2023] [Indexed: 04/11/2024] Open
Abstract
In this work, evaluated the antifungal chemosensitizing effect of the Lippia origanoides essential oil (EO) through the induction of oxidative stress. The EO was obtained by hydrodistillation and analyzed by GC-MS. To evaluate the antifungal chemosensitizing effect through induction of oxidative stress, cultures of the model yeast Saccharomyces cerevisiae ∆ycf1 were exposed to sub-inhibitory concentrations of the EO, and the expression of genes known, due be overexpressed in response to oxidative and mutagenic stress was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) method. Carvacrol and thymol were identified as the main components. The EO was effective in preventing or reducing the growth of the microorganisms tested. The gene expression profiles showed that EO promoted changes in the patterns of expression of genes involved in oxidative and mutagenic stress resistance. The combined use of the L. origanoides EO with fluconazole has been tested on Candida yeasts and the strategy resulted in a synergistic enhancement of the antifungal action of the azolic chemical product. Indeed, in association with EO, the fluconazole MICs dropped. Thus, the combinatorial use of L. origanoides EO as a chemosensitizer agent should contribute to enhancing the efficiency of conventional antifungal drugs, reducing their negative side effects.
Collapse
Affiliation(s)
- Sandra Layse F Sarrazin
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Oeste doPará, Campus Tapajós, Bloco Modular I, Avenida Vera Paz, s/n, 68040-255 Santarém, PR, Brazil
| | - Jean-Paul Bourdineaud
- University of Bordeaux, CNRS, UMR 5234, Fundamental Microbiology and Pathogenicity Laboratory, European Institute of Chemistry and Biology, 2 Rue Robert Escarpit, 33607 Pessac, France
| | - José Guilherme S Maia
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Rua Augusto Corrêa, 01, Guamá, 66075-110 Belém, PA, Brazil
| | - Rosa Helena V Mourão
- Programa de Pós-Graduação Doutorado em Rede de Biodiversidade e Biotecnologia (BIONORTE/Polo Pará), Universidade Federal do Oeste do Pará, Campus Tapajós, Bloco Modular I, Avenida Vera Paz, s/n, 68040-255 Santarém, PR, Brazil
| | - Ricardo B Oliveira
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Oeste doPará, Campus Tapajós, Bloco Modular I, Avenida Vera Paz, s/n, 68040-255 Santarém, PR, Brazil
| |
Collapse
|
2
|
Yamamoto K, Tochikawa S, Miura Y, Matsunobu S, Hirose Y, Eki T. Sensing chemical-induced DNA damage using CRISPR/Cas9-mediated gene-deletion yeast-reporter strains. Appl Microbiol Biotechnol 2024; 108:188. [PMID: 38300351 PMCID: PMC10834598 DOI: 10.1007/s00253-024-13020-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Microorganism-based genotoxicity assessments are vital for evaluating potential chemical-induced DNA damage. In this study, we developed both chromosomally integrated and single-copy plasmid-based reporter assays in budding yeast using a RNR3 promoter-driven luciferase gene. These assays were designed to compare the response to genotoxic chemicals with a pre-established multicopy plasmid-based assay. Despite exhibiting the lowest luciferase activity, the chromosomally integrated reporter assay showed the highest fold induction (i.e., the ratio of luciferase activity in the presence and absence of the chemical) compared with the established plasmid-based assay. Using CRISPR/Cas9 technology, we generated mutants with single- or double-gene deletions, affecting major DNA repair pathways or cell permeability. This enabled us to evaluate reporter gene responses to genotoxicants in a single-copy plasmid-based assay. Elevated background activities were observed in several mutants, such as mag1Δ cells, even without exposure to chemicals. However, substantial luciferase induction was detected in single-deletion mutants following exposure to specific chemicals, including mag1Δ, mms2Δ, and rad59Δ cells treated with methyl methanesulfonate; rad59Δ cells exposed to camptothecin; and mms2Δ and rad10Δ cells treated with mitomycin C (MMC) and cisplatin (CDDP). Notably, mms2Δ/rad10Δ cells treated with MMC or CDDP exhibited significantly enhanced luciferase induction compared with the parent single-deletion mutants, suggesting that postreplication and for nucleotide excision repair processes predominantly contribute to repairing DNA crosslinks. Overall, our findings demonstrate the utility of yeast-based reporter assays employing strains with multiple-deletion mutations in DNA repair genes. These assays serve as valuable tools for investigating DNA repair mechanisms and assessing chemical-induced DNA damage. KEY POINTS: • Responses to genotoxic chemicals were investigated in three types of reporter yeast. • Yeast strains with single- and double-deletions of DNA repair genes were tested. • Two DNA repair pathways predominantly contributed to DNA crosslink repair in yeast.
Collapse
Affiliation(s)
- Kosuke Yamamoto
- Molecular Genetics Laboratory, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Shintaro Tochikawa
- Molecular Genetics Laboratory, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Yuuki Miura
- Molecular Genetics Laboratory, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Shogo Matsunobu
- Molecular Genetics Laboratory, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Yuu Hirose
- Molecular Genetics Laboratory, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
- Laboratory of Genomics and Photobiology, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Toshihiko Eki
- Molecular Genetics Laboratory, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan.
| |
Collapse
|
3
|
de Luis B, Morellá-Aucejo Á, Llopis-Lorente A, Martínez-Latorre J, Sancenón F, López C, Murguía JR, Martínez-Máñez R. Nanoprogrammed Cross-Kingdom Communication Between Living Microorganisms. NANO LETTERS 2022; 22:1836-1844. [PMID: 35171622 PMCID: PMC9940291 DOI: 10.1021/acs.nanolett.1c02435] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The engineering of chemical communication at the micro/nanoscale is a key emergent topic in micro/nanotechnology, synthetic biology, and related areas. However, the field is still in its infancy; previous advances, although scarce, have mainly focused on communication between abiotic micro/nanosystems or between microvesicles and living cells. Here, we have implemented a nanoprogrammed cross-kingdom communication involving two different microorganisms and tailor-made nanodevices acting as "nanotranslators". Information flows from the sender cells (bacteria) to the nanodevice and from the nanodevice to receiver cells (yeasts) in a hierarchical way, allowing communication between two microorganisms that otherwise would not interact.
Collapse
Affiliation(s)
- Beatriz de Luis
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Ángela Morellá-Aucejo
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Unidad
Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades
y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain
| | - Antoni Llopis-Lorente
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Javier Martínez-Latorre
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Félix Sancenón
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Carmelo López
- Instituto
Universitario de Conservación y Mejora de la Agrodiversidad
Valenciana, Universitat Politècnica
de València (COMAV-UPV), 46022 Valencia, Spain
| | - José Ramón Murguía
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Unidad
Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades
y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain
- Unidad
Mixta de Investigación en Nanomedicina y Sensores, Instituto
de Investigación Sanitaria La Fe, Universitat Politècnica de València, 46026 Valencia, Spain
| |
Collapse
|
4
|
de Luis B, Llopis-Lorente A, Rincón P, Gadea J, Sancenón F, Aznar E, Villalonga R, Murguía JR, Martínez-Máñez R. An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms. Angew Chem Int Ed Engl 2019; 58:14986-14990. [PMID: 31424153 DOI: 10.1002/anie.201908867] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Indexed: 11/06/2022]
Abstract
The construction of communication models at the micro-/nanoscale involving abiotic nanodevices and living organisms has the potential to open a wide range of applications in biomedical and communication technologies. However, this area remains almost unexplored. Herein, we report, as a proof of concept, a stimuli-responsive interactive paradigm of communication between yeasts (as a model microorganism) and enzyme-controlled Janus Au-mesoporous silica nanoparticles. In the presence of the stimulus, the information flows from the microorganism to the nanodevice, and then returns from the nanodevice to the microorganism as a feedback.
Collapse
Affiliation(s)
- Beatriz de Luis
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Spain
| | - Antoni Llopis-Lorente
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Spain
| | - Paola Rincón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - José Gadea
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Spain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Spain
| | - Reynaldo Villalonga
- Nanosensors & Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - José Ramón Murguía
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Spain.,Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
5
|
Luis B, Llopis‐Lorente A, Rincón P, Gadea J, Sancenón F, Aznar E, Villalonga R, Murguía JR, Martínez‐Máñez R. An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Beatriz Luis
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Universitat de València Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN) Spain
| | - Antoni Llopis‐Lorente
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Universitat de València Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN) Spain
| | - Paola Rincón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Universitat de València Camino de Vera s/n 46022 Valencia Spain
| | - José Gadea
- Instituto de Biología Molecular y Celular de Plantas (IBMCP) Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC) Valencia Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Universitat de València Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN) Spain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Universitat de València Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN) Spain
| | - Reynaldo Villalonga
- Nanosensors & Nanomachines Group Department of Analytical Chemistry Faculty of Chemistry Complutense University of Madrid Madrid Spain
| | - José Ramón Murguía
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Universitat de València Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN) Spain
| | - Ramón Martínez‐Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Universitat de València Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN) Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina Universitat Politècnica de València Centro de Investigación Príncipe Felipe Valencia Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores Universitat Politècnica de València Instituto de Investigación Sanitaria La Fe Valencia Spain
| |
Collapse
|
6
|
Gombeau K, de Oliveira RB, Sarrazin SLF, Mourão RHV, Bourdineaud JP. Protective Effects of Plathymenia reticulata and Connarus favosus Aqueous Extracts against Cadmium- and Mercury-Induced Toxicities. Toxicol Res 2018; 35:25-35. [PMID: 30766655 PMCID: PMC6354948 DOI: 10.5487/tr.2019.35.1.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/21/2018] [Accepted: 07/20/2018] [Indexed: 12/11/2022] Open
Abstract
The extracts of Plathymenia reticulata and Connarus favosus are widely used in the folk medicine. The potential protective effects of these extracts have been evaluated against cadmium in the yeast Saccharomyces cerevisiae, and against mercurial contamination in zebrafish Danio rerio. In yeast, both extracts efficiently protected the Δycf1 mutant strain exposed to cadmium chloride restoring the growth, the expression of stress-response genes and decreasing the level of oxidative stress. In zebrafish, the supplementation of methylmercury-contaminated diet with both plant extracts similarly protected fish through the suppression of the methylmercury-induced lipid peroxidation, decrease of acetylcholinesterase activity, and restoring the expression levels of stress-response genes. This study particularly demonstrates the protective potential of both aqueous extracts against methylmercury, and could represent an interesting alternative for the Amazonian fish-eating communities to cope with the impact of chronic exposure to contaminated diets.
Collapse
Affiliation(s)
- Kewin Gombeau
- University of Bordeaux, CNRS, UMR 5805, EPOC, Arcachon Marine Station, 33120 Arcachon, France
| | - Ricardo Bezerra de Oliveira
- Federal University of Western Pará - UFOPA, PPGRNA, LABBEX, Tapajós Campus, Rua Vera Paz s/n, Bairro Salé, CEP, 68040-050, Caranazal, 88040-060 Santarém, Pará, Brazil
| | - Sandra Layse Ferreira Sarrazin
- Federal University of Western Pará - UFOPA, PPGRNA, LABBEX, Tapajós Campus, Rua Vera Paz s/n, Bairro Salé, CEP, 68040-050, Caranazal, 88040-060 Santarém, Pará, Brazil
| | - Rosa Helena Veras Mourão
- Federal University of Western Pará - UFOPA, PPGRNA, LABBEX, Tapajós Campus, Rua Vera Paz s/n, Bairro Salé, CEP, 68040-050, Caranazal, 88040-060 Santarém, Pará, Brazil
| | - Jean-Paul Bourdineaud
- University of Bordeaux, CNRS, UMR 5805, EPOC, Arcachon Marine Station, 33120 Arcachon, France
| |
Collapse
|
7
|
DNA Damage Response Checkpoint Activation Drives KP1019 Dependent Pre-Anaphase Cell Cycle Delay in S. cerevisiae. PLoS One 2015; 10:e0138085. [PMID: 26375390 PMCID: PMC4572706 DOI: 10.1371/journal.pone.0138085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/25/2015] [Indexed: 12/19/2022] Open
Abstract
Careful regulation of the cell cycle is required for proper replication, cell division, and DNA repair. DNA damage–including that induced by many anticancer drugs–results in cell cycle delay or arrest, which can allow time for repair of DNA lesions. Although its molecular mechanism of action remains a matter of debate, the anticancer ruthenium complex KP1019 has been shown to bind DNA in biophysical assays and to damage DNA of colorectal and ovarian cancer cells in vitro. KP1019 has also been shown to induce mutations and induce cell cycle arrest in Saccharomyces cerevisiae, suggesting that budding yeast can serve as an appropriate model for characterizing the cellular response to the drug. Here we use a transcriptomic approach to verify that KP1019 induces the DNA damage response (DDR) and find that KP1019 dependent expression of HUG1 requires the Dun1 checkpoint; both consistent with KP1019 DDR in budding yeast. We observe a robust KP1019 dependent delay in cell cycle progression as measured by increase in large budded cells, 2C DNA content, and accumulation of Pds1 which functions to inhibit anaphase. Importantly, we also find that deletion of RAD9, a gene required for the DDR, blocks drug-dependent changes in cell cycle progression, thereby establishing a causal link between the DDR and phenotypes induced by KP1019. Interestingly, yeast treated with KP1019 not only delay in G2/M, but also exhibit abnormal nuclear position, wherein the nucleus spans the bud neck. This morphology correlates with short, misaligned spindles and is dependent on the dynein heavy chain gene DYN1. We find that KP1019 creates an environment where cells respond to DNA damage through nuclear (transcriptional changes) and cytoplasmic (motor protein activity) events.
Collapse
|
8
|
Ochi Y, Sugawara H, Iwami M, Tanaka M, Eki T. Sensitive detection of chemical-induced genotoxicity by the Cypridina secretory luciferase reporter assay, using DNA repair-deficient strains of Saccharomyces cerevisiae. Yeast 2011; 28:265-78. [DOI: 10.1002/yea.1837] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/25/2010] [Indexed: 11/10/2022] Open
|
9
|
Parsons MA, Hadwiger LA. Photoactivated Psoralens Elicit Defense Genes and Phytoalexin Production in the Pea Plant. Photochem Photobiol 1998. [DOI: 10.1111/j.1751-1097.1998.tb05224.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Abstract
A summary of previously defined phenotypes in the yeast Saccharomyces cerevisiae is presented. The purpose of this review is to provide a compendium of phenotypes that can be readily screened to identify pleiotropic phenotypes associated with primary or suppressor mutations. Many of these phenotypes provide a convenient alternative to the primary phenotype for following a gene, or as a marker for cloning a gene by genetic complementation. In many cases a particular phenotype or set of phenotypes can suggest a function for the product of the mutated gene.
Collapse
Affiliation(s)
- M Hampsey
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway 08854, USA
| |
Collapse
|