1
|
Effects of Selective Deafferentation on the Discharge Characteristics of Medial Rectus Motoneurons. J Neurosci 2017; 37:9172-9188. [PMID: 28842421 DOI: 10.1523/jneurosci.1391-17.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/11/2017] [Accepted: 08/06/2017] [Indexed: 11/21/2022] Open
Abstract
Medial rectus motoneurons receive two main pontine inputs: abducens internuclear neurons, whose axons course through the medial longitudinal fasciculus (MLF), and neurons in the lateral vestibular nucleus, whose axons project through the ascending tract of Deiters (ATD). Abducens internuclear neurons are responsible for conjugate gaze in the horizontal plane, whereas ATD neurons provide medial rectus motoneurons with a vestibular input comprising mainly head velocity. To reveal the relative contribution of each input to the oculomotor physiology, single-unit recordings from medial rectus motoneurons were obtained in the control situation and after selective deafferentation from cats with unilateral transection of either the MLF or the ATD. Both MLF and ATD transection produced similar short-term alterations in medial rectus motoneuron firing pattern, which were more drastic in MLF of animals. However, long-term recordings revealed important differences between the two types of lesion. Thus, while the effects of the MLF section were permanent, 2 months after ATD lesioning all motoneuronal firing parameters were similar to the control. These findings indicated a more relevant role of the MLF pathway in driving motoneuronal firing and evidenced compensatory mechanisms following the ATD lesion. Confocal immunocytochemistry revealed that MLF transection produced also a higher loss of synaptic boutons, mainly at the dendritic level. Moreover, 2 months after ATD transection, we observed an increase in synaptic coverage around motoneuron cell bodies compared with short-term data, which is indicative of a synaptogenic compensatory mechanism of the abducens internuclear pathway that could lead to the observed firing and morphological recovery.SIGNIFICANCE STATEMENT Eye movements rely on multiple neuronal circuits for appropriate performance. The abducens internuclear pathway through the medial longitudinal fascicle (MLF) and the vestibular neurons through the ascending tract of Deiters (ATD) are a dual system that supports the firing of medial rectus motoneurons. We report the effect of sectioning the MLF or the ATD pathway on the firing of medial rectus motoneurons, as well as the plastic mechanisms by which one input compensates for the lack of the other. This work shows that while the effects of MLF transection are permanent, the ATD section produces transitory effects. A mechanism based on axonal sprouting and occupancy of the vacant synaptic space due to deafferentation is the base for the mechanism of compensation on the medial rectus motoneuron.
Collapse
|
2
|
Wang N, Perkins E, Zhou L, Warren S, May PJ. Reticular Formation Connections Underlying Horizontal Gaze: The Central Mesencephalic Reticular Formation (cMRF) as a Conduit for the Collicular Saccade Signal. Front Neuroanat 2017; 11:36. [PMID: 28487639 PMCID: PMC5403835 DOI: 10.3389/fnana.2017.00036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/05/2017] [Indexed: 11/26/2022] Open
Abstract
The central mesencephalic reticular formation (cMRF) occupies much of the core of the midbrain tegmentum. Physiological studies indicate that it is involved in controlling gaze changes, particularly horizontal saccades. Anatomically, it receives input from the ipsilateral superior colliculus (SC) and it has downstream projections to the brainstem, including the horizontal gaze center located in the paramedian pontine reticular formation (PPRF). Consequently, it has been hypothesized that the cMRF plays a role in the spatiotemporal transformation needed to convert spatially coded collicular saccade signals into the temporally coded signals utilized by the premotor neurons of the horizontal gaze center. In this study, we used neuroanatomical tracers to examine the patterns of connectivity of the cMRF in macaque monkeys in order to determine whether the circuit organization supports this hypothesis. Since stimulation of the cMRF produces contraversive horizontal saccades and stimulation of the horizontal gaze center produces ipsiversive saccades, this would require an excitatory cMRF projection to the contralateral PPRF. Injections of anterograde tracers into the cMRF did produce labeled terminals within the PPRF. However, the terminations were denser ipsilaterally. Since the PPRF located contralateral to the movement direction is generally considered to be silent during a horizontal saccade, we then tested the hypothesis that this ipsilateral reticuloreticular pathway might be inhibitory. The ultrastructure of ipsilateral terminals was heterogeneous, with some displaying more extensive postsynaptic densities than others. Postembedding immunohistochemistry for gamma-aminobutyric acid (GABA) indicated that only a portion (35%) of these cMRF terminals are GABAergic. Dual tracer experiments were undertaken to determine whether the SC provides input to cMRF reticuloreticular neurons projecting to the ipsilateral pons. Retrogradely labeled reticuloreticular neurons were predominantly distributed in the ipsilateral cMRF. Anterogradely labeled tectal terminals were observed in close association with a portion of these retrogradely labeled reticuloreticular neurons. Taken together, these results suggest that the SC does have connections with reticuloreticular neurons in the cMRF. However, the predominantly excitatory nature of the ipsilateral reticuloreticular projection argues against the hypothesis that this cMRF pathway is solely responsible for producing a spatiotemporal transformation of the collicular saccade signal.
Collapse
Affiliation(s)
- Niping Wang
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical CenterJackson, MS, USA.,Department of Periodontics and Preventive Sciences, University of Mississippi Medical CenterJackson, MS, USA
| | - Eddie Perkins
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical CenterJackson, MS, USA.,Department of Neurosurgery, University of Mississippi Medical CenterJackson, MS, USA
| | - Lan Zhou
- Department of Internal Medicine, G.V. Montgomery Veterans Administration Medical CenterJackson, MS, USA
| | - Susan Warren
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical CenterJackson, MS, USA
| | - Paul J May
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical CenterJackson, MS, USA.,Department of Neurology, University of Mississippi Medical CenterJackson, MS, USA.,Department of Ophthalmology, University of Mississippi Medical CenterJackson, MS, USA
| |
Collapse
|
3
|
Kato R, Grantyn A, Dalezios Y, Moschovakis AK. The local loop of the saccadic system closes downstream of the superior colliculus. Neuroscience 2006; 143:319-37. [PMID: 16934410 DOI: 10.1016/j.neuroscience.2006.07.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Revised: 07/06/2006] [Accepted: 07/18/2006] [Indexed: 11/26/2022]
Abstract
Models of the saccadic system differ in several respects including the signals fed back to their comparators, as well as the location and identity of the units that could serve as comparators. Some models place the comparator in the superior colliculus while others assign this role to the reticular formation. To test the plausibility of reticular models we stimulated electrically efferent fibers of the superior colliculus (SC) of alert cats along their course through the pons, in the predorsal bundle (PDB). Our data demonstrate that electrical stimulation of the PDB evokes saccades, even with stimuli of relatively low frequency (100 Hz), which are often accompanied by slow drifts. The velocity and latency of saccades are influenced by the intensity and frequency of stimulation while their amplitude depends on the intensity of stimulation and the initial position of the eyes. The dynamics of evoked saccades are comparable to those of natural, self-generated saccades of the cat and to those evoked in response to the electrical stimulation of the SC. We also show that PDB-evoked saccades are not abolished by lesions of the SC and that therefore antidromic activation of the SC is not needed for their generation. Our data clearly demonstrate that the burst generator of the horizontal saccadic system is located downstream of the SC. If it is configured as a local loop controller, as assumed by most models of the saccadic system, our data also demonstrate that its comparator is located beyond the decussation of SC efferent fibers, in the pons.
Collapse
Affiliation(s)
- R Kato
- Lab. de Physiologie de la Perception et de l'Action, C.N.R.S.-College de France, Paris, France
| | | | | | | |
Collapse
|
4
|
Nguyen LT, Baker R, Spencer RF. Abducens internuclear and ascending tract of Deiters inputs to medial rectus motoneurons in the cat oculomotor nucleus: Synaptic organization. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990308)405:2<141::aid-cne1>3.0.co;2-#] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lynette T. Nguyen
- Departments of Anatomy, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Robert Baker
- Department of Physiology and Neuroscience, New York University Medical Center, New York, New York 10016
| | - Robert F. Spencer
- Departments of Anatomy, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298
- Department of Otolaryngology‐Head and Neck Surgery, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298
| |
Collapse
|
5
|
Abducens internuclear and ascending tract of Deiters inputs to medial rectus motoneurons in the cat oculomotor nucleus: Synaptic organization. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990308)405:2<141::aid-cne1>3.0.co;2-%23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Moschovakis AK, Dalezios Y, Petit J, Grantyn AA. New mechanism that accounts for position sensitivity of saccades evoked in response to stimulation of superior colliculus. J Neurophysiol 1998; 80:3373-9. [PMID: 9862936 DOI: 10.1152/jn.1998.80.6.3373] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
New mechanism that accounts for position sensitivity of saccades evoked in response to stimulation of superior colliculus. J. Neurophysiol. 80: 3373-3379, 1998. Electrical stimulation of the feline superior colliculus (SC) is known to evoke saccades whose size depends on the site stimulated (the "characteristic vector" of evoked saccades) and the initial position of the eyes. Similar stimuli were recently shown to produce slow drifts that are presumably caused by relatively direct projections of the SC onto extraocular motoneurons. Both slow and fast evoked eye movements are similarly affected by the initial position of the eyes, despite their dissimilar metrics, kinematics, and anatomic substrates. We tested the hypothesis that the position sensitivity of evoked saccades is due to the superposition of largely position-invariant saccades and position-dependent slow drifts. We show that such a mechanism can account for the fact that the position sensitivity of evoked saccades increases together with the size of their characteristic vector. Consistent with it, the position sensitivity of saccades drops considerably when the contribution of slow drifts is minimal as, for example, when there is no overlap between evoked saccades and short-duration trains of high-frequency stimuli.
Collapse
Affiliation(s)
- A K Moschovakis
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology, Hellas
| | | | | | | |
Collapse
|
7
|
Kojima J, Matsumura M, Togawa M, Hikosaka O. Tonic activity during visuo-oculomotor behavior in the monkey superior colliculus. Neurosci Res 1996; 26:17-28. [PMID: 8895889 DOI: 10.1016/0168-0102(96)01067-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The purpose of this study was to examine whether the superior colliculus is involved in intermediary cognitive processes such as memory, movement preparation, and peripheral attention. To answer this question, we recorded single cell activities in the superior colliculus of monkeys trained to perform a series of visuo-oculomotor tasks: delayed saccade task (SACD), saccade task with overlap target (SACO), and attention task (ATT). We recorded 141 neurons showing tonic activities related to the tasks. Depending on the predominance of the activities among the three tasks, we classified the tonic neurons into four types: (1) visuomotor (greater activity in SACO), (2) mnemonic motor (SACD dominant), (3) attention (ATT), and (4) nonspecific. Among 108 neurons recorded in the intermediate layer, 13 were of a visuomotor type, 15 were of a mnemonic motor type, and 13 were of an attention type. The other 67 neurons were of a non-specific type. Of the 33 neurons in the superficial layer, many neurons were of the non-specific type. These results suggested that the tonic activities in the superior colliculus are related to memory of the target location, preparation of saccades and peripheral attention.
Collapse
Affiliation(s)
- J Kojima
- Laboratory of Neural Control, National Institute for Physiological Sciences, Okazaki, Japan
| | | | | | | |
Collapse
|
8
|
Stevens DR, Gerber U, McCarley RW, Greene RW. Glycine-mediated inhibitory postsynaptic potentials in the medial pontine reticular formation of the rat in vitro. Neuroscience 1996; 73:791-6. [PMID: 8809798 DOI: 10.1016/0306-4522(96)00046-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Glycinergic neurotransmission was examined in rat medial pontine reticular formation neurons in vitro. Intracellular recordings using glass microelectrodes were made in acutely prepared brainstem slices 400 microns thick. Spontaneous and electrically evoked synaptic activity was blocked by the glycine antagonist strychnine (1-5 microM) but not by the GABA antagonists bicuculline methiodide (40 microM) or picrotoxin (40 microM). Strychnine-sensitive spontaneous and evoked postsynaptic potentials persisted in the presence of the glutamate antagonist (kynurenate, 1 mM). Whole-cell voltage-clamp recordings were carried out in organotypic cultures of rat brainstem. The reversal potential of synaptic currents and responses to exogenously applied glycine were similar and were sensitive to manipulations of the chloride equilibrium potential. Synaptic activity but not responses to exogenous glycine were blocked by tetrodotoxin (0.3 microM). These results indicate the presence of robust, chloride ion-mediated glycinergic inhibition of medial pontine reticular formation neurons, and suggest that glycinergic neurons play an important role in controlling pontine premotor circuitry.
Collapse
|
9
|
Grantyn AA, Dalezios Y, Kitama T, Moschovakis AK. Neuronal mechanisms of two-dimensional orienting movements in the cat. I. A quantitative study of saccades and slow drifts produced in response to the electrical stimulation of the superior colliculus. Brain Res Bull 1996; 41:65-82. [PMID: 8879669 DOI: 10.1016/0361-9230(96)00024-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To evaluate the metrics of rapid eye movements caused by the activation of distinct collicular microzones, the superior colliculus (SC) was electrically stimulated in alert behaving cats while their heads were restrained. A quantitative study of electrically induced rapid eye movements demonstrated that their amplitude and direction depended on the intensity of stimulation, the electrode location, and the initial position of the eyes, while their duration depended on the intensity of stimulation. When detailed quantitative procedures are employed, properties of saccades produced in response to the electrical stimulation of the feline SC resemble those of saccades elicited in response to the electrical stimulation of a variety of primate brain areas. Besides saccades, electrical stimulation of the feline SC gave rise to slow drifts whose amplitude and direction was also influenced by the initial position of the eyes. Because their size depended on the frequency of stimulation and their time course reflected mechanical properties of the oculomotor plant, induced slow drifts could be due to a more or less direct projection of the SC onto extraocular motoneurons. A model that includes such a variety of connections between the SC and extraocular motoneurons is presented and is shown to produce realistic combinations of fast and slow eye movements when its input is a step function of time. The present findings support the notion that an orbital mechanical factor underlies the eye position sensitivity of slow drifts and saccades evoked in response to the electrical stimulation of the SC.
Collapse
Affiliation(s)
- A A Grantyn
- Laboratoire de Physiologie de la Perception et de l'Action, C.N.R.S.-College de France, Paris, France
| | | | | | | |
Collapse
|
10
|
Horn AK, Büttner-Ennever JA, Suzuki Y, Henn V. Histological identification of premotor neurons for horizontal saccades in monkey and man by parvalbumin immunostaining. J Comp Neurol 1995; 359:350-63. [PMID: 7499534 DOI: 10.1002/cne.903590212] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The premotor excitatory and inhibitory burst neurons are essential for horizontal saccades. In the monkey, excitatory burst neurons lie in the ipsilateral paramedian pontine reticular formation, and the inhibitory burst neurons lie more caudally in the contralateral nucleus paragigantocellularis dorsalis. For a neuropathological analysis of degenerative changes in saccadic disorders of patients, the histological identification of the burst neuron areas in man is important. Here, we show that this is possible with parvalbumin immunostaining as a histological marker. First, in monkeys, the premotor burst neurons were backlabeled by injections of wheat germ agglutinin-horseradish peroxidase or cholera toxin subunit B into the abducens nucleus or tetanus toxin fragment C into the lateral rectus muscle and shown by double labeling to contain parvalbumin. Then, human brainstem sections were immunoreacted for parvalbumin, and, by comparing the resulting staining pattern to that in the monkey, the homologous burst neuron areas were defined in man. In the monkey, excitatory burst neurons were confirmed to the nucleus reticularis pontis caudalis and did not extend farther rostrally into the nucleus reticularis pontis oralis. All retrogradely labeled cells in both burst neuron areas were parvalbumin positive, and approximately 70% of the parvalbumin-positive cells were retrogradely labeled. Both burst neuron areas were highlighted by their parvalbumin staining pattern and could be outlined in man as well. The putative excitatory burst neuron area in man is in the medial part of the nucleus reticularis pontis caudalis (extending 2.5 mm mediolaterally), immediately rostral (250 microns) to the omnipause neurons and extending 2.2 mm rostrally, and the putative inhibitory burst neuron area lies in the medial part of the paragigantocellular nucleus caudal to the abducens nucleus, extending 1.8 mm caudally. The location of the burst neuron areas, including the burst neurons themselves, via parvalbumin immunostaining will help in the analysis of clinical cases with slow saccades.
Collapse
Affiliation(s)
- A K Horn
- Institute of Neuropathology, LMU Munich, Germany
| | | | | | | |
Collapse
|
11
|
Olivier E, Grantyn A, Kitama T, Berthoz A. Post-spike facilitation of neck EMG by cat tectoreticulospinal neurones during orienting movements. J Physiol 1995; 482 ( Pt 2):455-66. [PMID: 7714836 PMCID: PMC1157743 DOI: 10.1113/jphysiol.1995.sp020532] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. The activity of fourteen tectoreticulospinal neurones (TRSNs) was recorded intraaxonally in the caudal pons of alert cats during orienting movements towards visual stimuli. TRSN spikes were used to compute the spike-triggered average (STA) of rectified EMG of dorsal neck muscles. 2. Eight TRSNs for which 400-2532 spikes were available were analysed with the STA technique. When the STA was computed from all spikes, significant post-spike facilitation (PSF) was obtained for six of eighteen cell-muscle pairs investigated (5 TRSNs). The mean relative amplitude of PSFs was 7.4% (S.D. 3.7). The onset latencies ranged from 1.1 to 5.0 ms and mean duration was 11.4 +/- 3.1 ms (mean +/- S.D.). 3. Interspike interval distributions were unimodal, with modes between 2.7 and 12.7 ms. Spike trains of TRSNs that produced significant PSFs contained 5-13% of the interspike intervals < or = 5 ms and 22-37% of the intervals < or = 10 ms. To evaluate the contribution of short intervals to PSF, STAs were computed separately for spikes preceded by 'short' (< or = 5 or < or = 10 ms) and 'long' (> 5 or > 10 ms) intervals. 4. When computed from spikes preceded by 'long' intervals, PSF amplitudes were small (mean +/- S.D., 5.3 +/- 2.7%) and onset latencies measured by cusum ranged between 2.4 and 5.4 ms. This is longer than the estimated minimal latency of monosynaptic facilitatory effect on neck EMG (1.9-2.1 ms). 5. Relative amplitudes of PSF obtained with spikes preceded by 'short' intervals were much larger (mean +/- S.D., 14.8 +/- 7.4%), but cusums indicated negative latencies for four of six PSFs. The unrealistically short onset latencies could be accounted for by the summation of facilitation from the trigger spike with that of the preceding spikes. In four of five TRSNs a large increase of PSF amplitude (from 3.2 to 7.2 times the amplitude obtained from 'long' intervals) suggests the presence of frequency-dependent potentiation of synaptic transmission. 6. This study unequivocally demonstrates that some TRSNs produce significant post-spike facilitation of neck motoneurones. This facilitation could be mediated by monosynaptic tectomotoneuronal connections although a contribution by disynaptic connections cannot be definitively ruled out. The high instantaneous firing rates of TRSNs produce a potentiation of the otherwise weak facilitatory action of TRSNs that presumably contributes to a rapid recruitment of motoneurones during initiation of head orienting movements.
Collapse
Affiliation(s)
- E Olivier
- Laboratoire de Physiologie de la Perception et de l'Action, CNRS Collège de France, Paris
| | | | | | | |
Collapse
|
12
|
Kakei S, Muto N, Shinoda Y. Innervation of multiple neck motor nuclei by single reticulospinal tract axons receiving tectal input in the upper cervical spinal cord. Neurosci Lett 1994; 172:85-8. [PMID: 8084543 DOI: 10.1016/0304-3940(94)90668-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Axons of reticulospinal neurons (RSNs) activated monosynaptically by stimulation of the contralateral superior colliculus (SC) were stained with intraaxonal injection of horseradish peroxidase in the cat upper cervical spinal cord. Stem axons of single RSNs gave rise to multiple axon collaterals to laminae IX, VIII and VII over a few cervical segments. Single RSNs made contacts with retrogradely labeled neck motoneurons of different neck muscles. Therefore, RSNs were regarded as mediating output of the SC to functionally different groups of neck muscles simultaneously. The result gave evidence of neural implementation of a functional synergy for a neck movement at a single neuron level.
Collapse
Affiliation(s)
- S Kakei
- Department of Physiology, School of Medicine, Tokyo Medical and Dental University, Japan
| | | | | |
Collapse
|
13
|
Spencer RF, Wang SF, Baker R. The pathways and functions of GABA in the oculomotor system. PROGRESS IN BRAIN RESEARCH 1992; 90:307-31. [PMID: 1631304 DOI: 10.1016/s0079-6123(08)63620-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- R F Spencer
- Department of Anatomy, Medical College of Virginia, Richmond 23298
| | | | | |
Collapse
|
14
|
Camacho-Arroyo I, Alvarado R, Tapia R. Release of acetylcholine and GABA, and activity of their synthesizing enzymes in the rat pontine reticular formation. Neurochem Res 1991; 16:837-41. [PMID: 1686297 DOI: 10.1007/bf00965530] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The aim of this study was to obtain neurochemical information on the possible role of acetylcholine (ACh) and gamma-aminobutyric acid (GABA) as neurotransmitters in the pontine reticular formation (PRF). We studied the uptake of labeled choline and GABA, as well as the release of this amino acid and of ACh, in PRF slices of the rat. In addition, choline acetyltransferase, acetylcholinesterase and glutamate decarboxylase activities were assayed in PRF homogenates. The uptake of GABA was strictly Na(+)-dependent, whereas choline uptake was only partially Na(+)-dependent. The release of both ACh and GABA was stimulated by K(+)-depolarization, but only the former was Ca(2+)-dependent. Choline acetyltransferase activity in the PRF was 74% of that in the striatum, whereas acetylcholinesterase activity was considerably lower. Glutamate decarboxylase activity in the PRF was about half that observed in the striatum. These findings support the possibility that both ACh and GABA may act as neurotransmitters in the rat PRF.
Collapse
Affiliation(s)
- I Camacho-Arroyo
- Departamento de Neurociencias, Universidad Nacional Autónoma de México, D.F
| | | | | |
Collapse
|
15
|
Holstege G. Descending motor pathways and the spinal motor system: limbic and non-limbic components. PROGRESS IN BRAIN RESEARCH 1991; 87:307-421. [PMID: 1678191 DOI: 10.1016/s0079-6123(08)63057-5] [Citation(s) in RCA: 200] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- G Holstege
- Department of Anatomy, University of California, San Francisco
| |
Collapse
|
16
|
De La Cruz RR, Escudero M, Delgado-García JM. Behaviour of Medial Rectus Motoneurons in the Alert Cat. Eur J Neurosci 1989; 1:288-295. [PMID: 12106159 DOI: 10.1111/j.1460-9568.1989.tb00796.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The activity of identified medial rectus motoneurons was recorded in alert cats during spontaneous and vestibular induced eye movements. Medial rectus motoneurons fired a burst of spikes slightly preceding adducting saccades and increased their discharge rate linearly with successive eye positions in the adducting direction. Conduction velocity (21.3 - 98.2 m/s), eye position sensitivity (ks, 7.1 +/- 1.5 spikes/s/deg), and eye velocity sensitivity (rs, 1 +/- 0.2 spikes/s/deg/s) during spontaneous eye movements, and time constants calculated from phase lead analysis (To, 135 +/- 36 ms) showed values similar to those described previously for cat abducens motoneurons. The firing rate during repeated fixation of the same eye position was affected significantly by the direction of the preceding saccade and by the animal's level of alertness. Eye velocity sensitivity was not significantly affected by changes in the animal's level of alertness. A weak negative relationship (coefficient of correlation=-0.56) was observed between eye velocity sensitivity (rv) and sinusoidal rotational frequency, with no change in eye position sensitivity (kv) with stimulus frequency. The subsequent changes in the time constant (Tv) calculated as Tv=rv/kv in relation to stimulus frequency suggests that the oculomotor system deviates from a (linear) first-order model.
Collapse
Affiliation(s)
- R. R. De La Cruz
- Laboratorio de Neurociencia, Departamento de Fisiologia y Biologia Animal, Facultad de Biologia, 41012 Sevilla, Spain
| | | | | |
Collapse
|
17
|
Delgado-García JM, Vidal PP, Gómez C, Berthoz A. A neurophysiological study of prepositus hypoglossi neurons projecting to oculomotor and preoculomotor nuclei in the alert cat. Neuroscience 1989; 29:291-307. [PMID: 2725860 DOI: 10.1016/0306-4522(89)90058-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The activity of 62 antidromically identified prepositus hypoglossi neurons was recorded in 10 alert cats during spontaneous, vestibular or visually induced eye movements. Neurons were antidromically activated from stimulating electrodes implanted in the ipsilateral medial longitudinal fasciculus (n = 24), the ipsilateral interstitial nucleus of Cajal (n = 6), the ipsilateral parabigeminal nucleus (n = 2), the contralateral superior colliculus (n = 6) and the contralateral cerebellar posterior peduncle (n = 24). Neurons were identified as eye-movement-related when their rate-position and/or rate-velocity plots showed correlation coefficients greater than or equal to 0.6. They were further classified as "position", "position-velocity" and "velocity-position" according to their relative eye position and velocity coefficients. However, they seemed to be distributed as a continuum in which a progressive decrease of eye velocity sensitivity was accompanied by a proportional increase in eye position sensitivity. "Position-velocity" neurons (n = 9) were mainly horizontal type II neurons projecting to the vicinity of the oculomotor complex; two of these neurons with vertical sensitivity were also activated from the interstitial nucleus of Cajal. Mean position and velocity sensitivity of these neurons were 5.2 spikes/s per degree and 0.62 spikes/s per degree per second, respectively. Pure "position" neurons (n = 7) also showed activation during ipsilateral eye fixations; their mean position gain was 7.3 spikes/s per degree and they projected to the ipsilateral oculomotor and Cajal nuclei, and to the contralateral superior colliculus. "Velocity-position" neurons (n = 18) were type I or II neurons with rather irregular tonic firing rates and a mean velocity gain of 0.75 spikes/s per degree per second. Type II "velocity-position" neurons projected mainly to the oculomotor area, while type I neurons projected preferentially to the cerebellum. A special type of "pause" neuron (n = 5), with very low firing rate and pausing mainly for contralateral saccades, was activated exclusively from the contralateral posterior peduncle. Many neurons with weak eye movement sensitivity (n = 22) were activated mainly (73%) from the cerebellum. It can be concluded that the prepositus hyperglossi nucleus distributes specific eye movement related signals to motor and premotor brainstem and cerebellar structures. The variability of interspike intervals of representative prepositus hypoglossi neurons of each class was compared to the discharge variability of identified abducens motoneurons.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
18
|
Affiliation(s)
- P P Vidal
- Laboratoire de Physiologie Neurosensorielle, Paris, France
| | | | | | | |
Collapse
|
19
|
Mitani A, Ito K, Mitani Y, McCarley RW. Morphological and electrophysiological identification of gigantocellular tegmental field neurons with descending projections in the cat: I. Pons. J Comp Neurol 1988; 268:527-45. [PMID: 3356804 DOI: 10.1002/cne.902680405] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two different descending projections from the pontine gigantocellular tegmental field (PFTG) were defined by the use of intracellular recording and intracellular horseradish peroxidase (HRP) techniques in the cat. Type I neurons (reticulospinal neurons) had antidromic spike potentials produced by stimulation of the ipsilateral medial longitudinal fasciculus (MLF) and sent axons to the ipsilateral MLF. Most type I neurons had large ellipsoidpolygonal somata (mean, 59.7 microns), thick axons (average diameter, 3.33 microns), and slightly oblate large dendritic fields. The mean anteroposterior extent of the dendritic field was 1,492 microns, the mean mediolateral extent was 1,784 microns, and the mean dorsoventral extent was 1,562 microns. There were no type I neurons with axon collaterals. In contrast, type II neurons (reticuloreticular neurons) had antidromic spike potentials produced by stimulation of the bulbar reticular formation (BRF) and sent axons directly to the BRF. In comparison with type I neurons, most type II neurons had smaller ellipsoidpolygonal somata (mean, 40.2 microns), thinner axons (average diameter, 2.32 microns), and smaller, slightly oblate dendritic fields. The mean anteroposterior extent of the dendritic field was 1,264 microns; the mean mediolateral extent was 1,511 microns; and the mean dorsoventral extent was 1,226 microns. Also in contrast to type I neurons, 36% of type II neurons had axon collaterals.
Collapse
Affiliation(s)
- A Mitani
- Department of Psychiatry, Harvard Medical School/Brockton VAMC, Massachusetts 02401
| | | | | | | |
Collapse
|
20
|
Grantyn A, Berthoz A. Reticulo-spinal neurons participating in the control of synergic eye and head movements during orienting in the cat. I. Behavioral properties. Exp Brain Res 1987; 66:339-54. [PMID: 3595779 DOI: 10.1007/bf00243309] [Citation(s) in RCA: 106] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The activity of 24 reticulo-spinal neurons (RSN) identified by antidromic stimulation at the C1-C2 level has been recorded intra-axonally in the pons of alert head-fixed cats during spontaneous gaze shifts and orienting towards novel targets. Relationship of neuronal discharge to saccadic eye movements, positions of fixation and EMG of dorsal neck muscles were analysed. The present report describes behavioral properties of a group of 14 RSN showing similar types of correlations with motor parameters during eye-head synergies. These "eye-neck" RSN (EN-RSN) generate bursts in synchrony with phasic components of ipsilateral neck EMG and leading ipsiversive saccades by a variable lead time. Bursts are followed by a prolonged discharge whose frequency decays even when eccentric eye position is maintained constant and accompanied by sustained neck muscle activity. The firing rate of EN-RSNs depends on eye position: they are silent with saccades in their ON-direction when the eyes are deviated towards the contralateral half of the oculomotor range and the ipsilateral neck muscles are relaxed. When the eyes cross the vertical meridian, the frequency of phasic and tonic components related to eye-head synergies increase proportionally to ipsilateral eye position. Ten of the 14 EN-RSNs, located in the pontine reticular formation, received monosynaptic input from the contralateral superior colliculus. Two were labeled by intra-axonal injection of HRP which revealed extensive branching in the abducens, facial, medial and lateral vestibular, prepositus and intercalatus nuclei and in the caudal pontine and bulbar reticular formation. It is concluded that the caudal pontine tegmentum, including the region just anterior to the abducens nucleus, contains RSNs whose signals seem appropriate to control phasic neck muscle activity and which also project to structures related to ocular and facial movements. Comparisons with the perisaccadic activity of tectal neurons projecting in the predorsal bundle reveals a profound transformation of the descending signal at the level of EN-RSNs which represent first order relay neurons of the tecto-reticulo-spinal pathway.
Collapse
|
21
|
Grantyn A, Ong-Meang Jacques V, Berthoz A. Reticulo-spinal neurons participating in the control of synergic eye and head movements during orienting in the cat. II. Morphological properties as revealed by intra-axonal injections of horseradish peroxidase. Exp Brain Res 1987; 66:355-77. [PMID: 3595780 DOI: 10.1007/bf00243310] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Previously we described physiological properties of pontine reticulo-spinal neurons which generate bursts and decaying tonic discharges related to eye movements and neck muscle activity during ipsiversive gaze shifts (Grantyn and Berthoz 1987). Two of these "eye-neck reticulo-spinal neurons" (EN-RSN) were labeled by intra-axonal injections of HRP. The present report provides a detailed description of their morphology with an emphasis on the topography of axon collaterals, bouton numbers, and the structure of preterminal ramifications in different target areas. The cell bodies of labeled EN-RSNs were located rostro-ventrally to the abducens nucleus. Their descending axons issued 8 and 13 collaterals (left and right EN-RSN, respectively) at different rostro-caudal levels, between the abducens nucleus and the pyramidal decussation. On the basis of the size of their cell bodies, the isodendritic type of dendritic branching and their multiple collateralization, EN-RSNs correspond to the class of "generalized" reticular neurons, often referred to as The Scheibels' neurons. Collaterals of EN-RSNs terminated in the following structures: the abducens and facial nuclei, the medial and lateral vestibular nuclei, the nn. prepositus and intercalatus, and the bulbar reticular formation. As judged from bouton numbers, the strongest connection of both neurons was with the abducens nuclei. Terminations in the rostral part of the medial vestibular and prepositus nuclei indicate that EN-RSNs may also influence oculomotor output activity through these indirect routes. In the facial nucleus, a majority of terminations was found in its medial subdivision containing motoneurons of ear muscles. However, other subdivisions were also contacted by EN-RSNs. Most terminations in the rostral bulbar reticular formation are distributed to the dorsal, gigantocellular field. Within this field, there is a substantial contribution to the zone characterized by the highest density of reticulo-spinal neurons projecting directly to neck motoneurons. Other target areas which may participate in the modulation of spinal cord activity by EN-RSNs are the ventral reticular nucleus in the caudal medulla and the lateral vestibular nucleus. EN-RSNs also establish connections with precerebellar structures: the prepositus and the paramedian reticular nuclei. The numbers of boutons on collaterals issued within 6 mm of the injection site varied between 37 and 469. The occurrence of presumed axo-somatic contacts was low (0-8.2%) and not characteristic for any particular target area. Local accumulations of boutons in the form of small and large field clusters was a common observation.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
22
|
Sirkin DW, Feng AS. Autoradiographic study of descending pathways from the pontine reticular formation and the mesencephalic trigeminal nucleus in the rat. J Comp Neurol 1987; 256:483-93. [PMID: 3558885 DOI: 10.1002/cne.902560402] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Descending projections were studied in autoradiographically prepared material after injections of tritiated leucine in the pontine tegmentum of rats. Injections involving the medial pontine reticular formation resulted not only in labeling commissural fibers, the medial reticulospinal tract, and the dorsal cap of the inferior olive, but also, in two cases, in labeling a cerebellar projection that originated from a region near the midline and clearly dorsal to the nucleus reticularis tegmenti pontis. The labeled fibers passed ventral in the midline to the pontine gray, then laterally through the gray and into the middle cerebellar peduncle to terminate as mossy fibers primarily in the flocculus, lobulus simplex, and Crus I of the ansiform lobule. Injections involving the mesencephalic nucleus of the trigeminal nerve (Vmes), resulted in labeling of Probst's tract, which descends in the dorsolateral reticular formation. Probst's tract gave off extensive terminal branches to the lateral medullary reticular formation and weaker projections to restricted portions of the descending trigeminal nucleus, the solitary nucleus, and the hypoglossal nucleus. In one case, fibers could be traced into the dorsal horn of the upper cervical cord.
Collapse
|
23
|
Strassman A, Highstein SM, McCrea RA. Anatomy and physiology of saccadic burst neurons in the alert squirrel monkey. I. Excitatory burst neurons. J Comp Neurol 1986; 249:337-57. [PMID: 3734160 DOI: 10.1002/cne.902490303] [Citation(s) in RCA: 149] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Saccadic burst neurons in the pontine reticular formation have been implicated in the generation of saccades in the horizontal plane on the basis of lesion and extracellular recording studies in the cat and monkey. In the present study, saccadic burst neurons were anatomically and physiologically characterized with intraaxonal recording and injection of horseradish peroxidase in the alert squirrel monkey. A population of burst neurons were found that appear analogous to the excitatory burst neurons (EBNs) described previously in the cat. All neurons are located in the caudal pontine reticular formation and have a major axonal projection to the ipsilateral abducens nucleus. Additional projections were found to the medial vestibular nucleus, the nucleus prepositus, and regions of the pontine and medullary reticular formation rostral, ventral, and caudal to the abducens. All neurons fire exclusively during saccades and have a discharge pattern similar to that of medium-lead burst neurons described previously in the cat and monkey. In most neurons the saccadic burst begins 5-15 msec before saccade onset. Linear relationships exist between burst duration and saccade duration, number of spikes in the burst and saccade amplitude, and firing frequency and instantaneous velocity. Physiological activity of each neuron shows the closest relationship with the amplitude of the saccade component in a particular direction. For all neurons, this on-direction is in the ipsilateral hemifield and is predominantly horizontal, but may have either an upward or downward vertical component. These results support a major role for the EBNs in the monkey in generating the saccadic burst in abducens motoneurons, as well as in contributing to the oculomotor activity in other classes of premotor neurons.
Collapse
|
24
|
Delgado-Garcia JM, del Pozo F, Baker R. Behavior of neurons in the abducens nucleus of the alert cat--I. Motoneurons. Neuroscience 1986; 17:929-52. [PMID: 3487043 DOI: 10.1016/0306-4522(86)90072-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The activity of 53 antidromically identified abducens motoneurons was analyzed in alert cats during spontaneous and vestibular induced eye movements. Conduction velocities ranged from 13 to 70 m/s and all motoneurons increased their discharge rates with successive eye positions in the abducting direction. Motoneurons were recruited from -19 degrees to +7 degrees. Within the oculomotor range frequency saturation was never observed for any cell. The slope of rate-position (k) relationships ranged from 2 to 17.7 spikes/s/deg (n = 40, mean 8.7 +/- 2.5). Regression analysis showed that the rate-position plots could be fit by straight lines but in most cases exponential curves produced slightly better statistical fits. Steeper slopes suggest that successively larger increases in k are required for the lateral rectus muscle to maintain more eccentric fixations in the on direction. Interspike intervals for a constant eye position exhibited low variability (less than 3.5%) for fixations shorter than 1 s. Over longer periods, variability increased in proportion to the duration of the fixation in exponential-like fashion up to 14%. Abducens motoneurons showed considerable variability in frequency during repeated fixations of the same eye position. Discharge rates were found to depend upon both the direction of the previous eye movement and, more importantly, the animal's level of alertness. The rate-position regression lines for fixation periods after saccades in the on direction significantly differed in slopes (100%) and thresholds (20%) from those in the off direction. The observed static hysteresis in abducens motoneuron behavior was in opposite direction to that previously described for the mechanical properties of the lateral rectus. This suggests both neural and mechanical factors are significantly involved in determining final eye position. The animal's level of alertness was evaluated in this study by counting the number of saccadic movements/s occurring in "alert" (1 +/- 0.2 saccades/s), and "drowsy" (0.5 +/- 0.2 saccades/s) circumstances. Comparison of the rate-position regression lines between the two conditions showed a significant decrease in slopes (100%) and elevation of thresholds (70%). Discharge rate of abducens motoneurons increased abruptly 8.9 +/- 2.8 ms prior to saccades in the horizontal on direction, and decreased 14.8 +/- 4.05 m before saccades in the off direction. During purely vertical saccades the firing frequency of abducens motoneurons did not change. Burst frequency did not saturate during saccades, but increased with saccadic velocity in a linear fashion.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
25
|
Delgado-Garcia JM, del Pozo F, Baker R. Behavior of neurons in the abducens nucleus of the alert cat--II. Internuclear neurons. Neuroscience 1986; 17:953-73. [PMID: 3487044 DOI: 10.1016/0306-4522(86)90073-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The activity of 43 antidromically identified abducens internuclear neurons with conduction velocities ranging from 14 to 54 m/s was analyzed in alert cats during spontaneous and vestibular induced eye movements. The discharge rate of internuclear neurons significantly increased with successive adducting positions of the contralateral eye. Slopes of rate-position (k) relationships ranged from 3.1 to 17.9 spikes/deg (mean 12.01 +/- 3.1). Threshold ranged from -19 degrees to +3 degrees. Frequency saturation was never observed for any internuclear neuron within the oculomotor range. Although straight lines were selected to illustrate the rate-position relationships, exponential curves always provided the best statistical fit demonstrating that an enhancement in frequency potentiation (k) must accompany more eccentric fixations in the on direction. Internuclear neurons showed a low variability in firing rate (less than 3.0%) for fixations less than 1 s. Variability increased with both longer and repeated fixations of the same eye position. Discharge rates were found to depend upon both the direction of the preceding eye movement and the animal's level of alertness. Separate regression lines of rate-position relations following saccades in the on and off directions differed significantly in slope (100%), but not threshold. The observed static hysteresis in an identified non-motoneuron shows this property to be in a central neural circuit prior to the extraocular motoneuron. The slopes (k) of rate-position plots for all internuclear neurons decreased significantly (100%) when level of alertness changed from "alert" (1 +/- 0.2 saccades/s) to "drowsy" (0.5 +/- 0.2 saccades/s). Thresholds, however, were not significantly altered. Discharge rate of abducens internuclear neurons increased abruptly 10.4 +/- 2.5 ms preceding saccades in the on direction, and decreased 20.5 +/- 7.8 ms before saccades in the off direction. Internuclear neuronal activity was not affected by pure vertical saccades. During on direction saccades, firing frequency did not saturate, but increased with velocity in a linear fashion. Exponential functions often fit the data better due to the difference in slopes of rate-velocity plots for on vs off direction saccades. Slopes (rs) of rate-velocity regression lines during spontaneous saccades ranged from 0.99 to 4.10 spikes/s/deg/s (mean 2.16 +/- 0.93). During saccades in the off direction activity always decreased, but it seldom ceased. Rate-velocity regression lines measured during the fast phase of vestibular nystagmus (rsv = 2.09 +/- 0.88) showed no significant differences from rs slopes in 82% of the cases.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
26
|
Vidal PP, Graf W, Berthoz A. The orientation of the cervical vertebral column in unrestrained awake animals. I. Resting position. Exp Brain Res 1986; 61:549-59. [PMID: 3082659 DOI: 10.1007/bf00237580] [Citation(s) in RCA: 151] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The orientation of the cervical vertebral column was studied by X-ray photography of the region containing the head and the neck in nine unrestrained species of vertebrates (man, monkey, cat, rabbit, guinea pig, rat, chicken, frog, lizard). In addition, the orientation of the horizontal semicircular canals was measured in four species using landmarks on the skull. In all vertebrates studied, with the exception of frog and lizard, the general orientation of the cervical vertebral column was vertical when animals were at rest, and not horizontal or oblique as suggested by the macroscopic appearance of the neck. The posture of the animal, whether lying, sitting or standing, had little effect on this general vertical orientation, although some variability was noticed depending on the species. This finding prompted the definition of a resting zone, where the cervical column can take any orientation within a narrow range around a mean position. The cervical vertebral column composes part of the S-shaped structure of the entire vertebral column, with one inflection around the cervico-thoracic (C7/Th1) junction. This feature is already noticable in the lizard. The vertical orientation of the cervical vertebral column is interpreted to provide a stable and energy saving balance of the head. Furthermore, when the head is lowered or raised, the atlanto-occipital and cervico-thoracic junctions are predominantly involved, while the entire cervical column largely preserves its intrinsic configuration. The curved configuration of the cervico-thoracic vertebral column embedded in long spring-like muscles is interpreted to function as a shock absorber. At rest, animals did not hold their heads with the horizontal canals oriented earth horizontally all the time, but often maintained them pitched up by ca. 5 deg, as has been reported for man. At other times, presumably when the vigilance level increased, the horizontal canals were brought into the earth horizontal plane. The vertical orientation of the cervical column results in a vertical positioning of the odontoid process of the axis (second cervical vertebra, C2), which thus provides the axis of rotation for yaw movements of the head. This axis corresponds to that of the horizontal semicircular canals. The vertical organization of the cervical vertebral column in birds and mammals, whether the animal is quadrupedal or bipedal, points to a common organizational principle for eye and head movement systems.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
27
|
Berthoz A, Grantyn A. Neuronal mechanisms underlying eye-head coordination. PROGRESS IN BRAIN RESEARCH 1986; 64:325-43. [PMID: 3726150 DOI: 10.1016/s0079-6123(08)63427-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
28
|
Büttner-Ennever J, Holstege G. Anatomy of premotor centers in the reticular formation controlling oculomotor, skeletomotor and autonomic motor systems. PROGRESS IN BRAIN RESEARCH 1986; 64:89-98. [PMID: 3523615 DOI: 10.1016/s0079-6123(08)63404-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
Abstract
The afferent and efferent connections of the nucleus prepositus hypoglossi with brainstem nuclei were studied using anterograde and retrograde axonal transport techniques, and by intracellular recordings and injections of horseradish peroxidase into prepositus hypoglossi neurons. The results of experiments in which horseradish peroxidase was injected into the prepositus hypoglossi suggest that the major inputs to the prepositus hypoglossi arise from the ipsi- and contralateral perihypoglossal nuclei (particularly the prepositus hypoglossi and intercalatus), vestibular nuclei (particularly the medial, inferior, and ventrolateral nuclei), the paramedian medullary and pontine reticular formation, and from the cerebellar cortex (flocculus, paraflocculus, and crus I; the nodulus was not available for study). Regions containing fewer labeled cells included the interstitial n. of Cajal, the rostral interstitial n. of the medial longitudinal fasciculus, the n. of the posterior commissure, the superior colliculus, the n. of the optic tract, the extraocular motor nuclei, the spinal trigeminal n., and the central cervical n. The efferent connections of the prepositus hypoglossi were studied by injecting 3H-leucine into the prepositus hypoglossi, and by following the axons of intracellularly injected prepositus hypoglossi neurons. The results suggest that in addition to the cerebellar cortex, the most important extrinsic targets of prepositus hypoglossi efferents are the vestibular nuclei (particularly the medial, inferior, and ventrolateral nuclei, and the area X), the inferior olive (contralateral dorsal cap of Kooy and ipsilateral subnucleus b of the medial accessory olive), the paramedian medullary and pontine reticular formation, the reticular formation surrounding the parabigeminal n., the contralateral superior colliculus and pretectum, the extraocular motor nuclei (particularly the contralateral abducens nucleus and the ipsilateral medial rectus subdivision of the oculomotor nucleus), the ventral lateral geniculate n., and the central lateral thalamic nucleus. Other areas which were lightly labeled in the autoradiographic experiments were the contralateral spinal trigeminal n., the n. raphe pontis, the Edinger Westphal n., the zona incerta, and the paracentral thalamic n. Many of the efferent connections of the prepositus hypoglossi appear to arise from principal prepositus hypoglossi neurons whose axons collateralize extensively in the brainstem. On the other hand, small prepositus hypoglossi neurons project to the inferior olive, and multidendritic neurons project to the cerebellar flocculus, apparently without collateralizing in the brainstem.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
30
|
Highstein SM, Karabelas A, Baker R, McCrea RA. Comparison of the morphology of physiologically identified abducens motor and internuclear neurons in the cat: a light microscopic study employing the intracellular injection of horseradish peroxidase. J Comp Neurol 1982; 208:369-81. [PMID: 7119166 DOI: 10.1002/cne.902080407] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Abducens motoneurons and internuclear neurons were identified electrophysiologically in anesthesized, paralyzed cats and stained by intracellular injection of horseradish peroxidase. Neurons were reconstructed and surface area of selected cells measured by light microscopy. Surface area of motoneurons and internuclear neuron with similar soma size and shape were roughly comparable. Dendrites of motoneurons were highly tapered and highly branched. By contrast, dendrites of internuclear neurons were less tapered and less branched. Axons of motoneurons had no collaterals within the brainstem. Internuclear axons crossed the midline at the level of their parent somata and ascended in the medial longitudinal fasciculus toward the oculomotor nucleus. Approximately 30% of the internuclear axons branched in the contralateral medial longitudinal fasciculus sending a fine collateral caudal toward the prepositus hypoglossi nucleus. The results suggest that, on the average, structural correlates of injected neurons (i.e., soma-dendritic morphology) can account at least in part for the earlier firing and higher intraburst frequencies of internuclear neurons versus motoneurons during on-direction rapid eye movements in alert cats.
Collapse
|
31
|
Stein BE, Spencer RF, Edwards SB. Efferent projections of the neonatal superior colliculus: extraoculomotor-related brain stem structures. Brain Res 1982; 239:17-28. [PMID: 6178463 DOI: 10.1016/0006-8993(82)90830-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The development of eye movements is a prolonged process which presumably involves the efferents of the superior colliculus. In the present study we sought to determine which, if any, of the colliculus efferents that influence eye movements in adult cats were present in neonatal kittens. The autoradiographic and orthograde horseradish peroxidase tracing methods were employed in kittens ranging from 6 h to 5 weeks of age and in adult cats. Surprisingly, most of the known projections from the superior colliculus which are believed to be involved in eye movements were already present in the youngest animals studied. These included projections to (a) the ventral central gray matter overlying the oculomotor nucleus, and (b) those portions of the pontine and medullary reticular formation which provide excitatory and inhibitory inputs to abducens neurons. Apparently, the pathways over which the superior colliculus influences eye movements are elaborated quite early in life. However, in the predorsal bundle and pontomedullary reticular areas the density of transported label was less in 1-day-old kittens than in older animals. Thus, anatomical as well as functional development of portions of this circuitry appear to require a significant period of postnatal maturation.
Collapse
|
32
|
Sasaki S, Shimazu H. Reticulovestibular organization participating in generation of horizontal fast eye movement. Ann N Y Acad Sci 1981; 374:130-43. [PMID: 6951433 DOI: 10.1111/j.1749-6632.1981.tb30866.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
33
|
Baker R, Evinger C, McCrea RA. Some thoughts about the three neurons in the vestibular ocular reflex. Ann N Y Acad Sci 1981; 374:171-88. [PMID: 6978630 DOI: 10.1111/j.1749-6632.1981.tb30869.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|