1
|
Meldrum Robertson R, MacMillan HA, Andersen MK. A cold and quiet brain: mechanisms of insect CNS arrest at low temperatures. CURRENT OPINION IN INSECT SCIENCE 2023:101055. [PMID: 37201631 DOI: 10.1016/j.cois.2023.101055] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/20/2023]
Abstract
Exposure to cold causes insects to enter a chill coma at species-specific temperatures and such temperature sensitivity contributes to geographic distribution and phenology. Coma results from abrupt spreading depolarization (SD) of neural tissue in the integrative centers of the CNS. SD abolishes neuronal signaling and the operation of neural circuits, like an off switch for the CNS. Turning off the CNS by allowing ion gradients to collapse will conserve energy and may offset negative consequences of temporary immobility. SD is modified by prior experience via rapid cold hardening (RCH) or cold acclimation which alter properties of Kv channels, Na+/K+-ATPase and Na+/K+/2Cl- cotransporter. The stress hormone octopamine mediates RCH. Future progress depends on developing a more complete understanding of ion homeostasis in and of the insect CNS.
Collapse
Affiliation(s)
| | - Heath A MacMillan
- Department of Biology, Carleton University, Ottawa, ON, Canada, K1S 5B6.
| | - Mads K Andersen
- Department of Biology, Carleton University, Ottawa, ON, Canada, K1S 5B6.
| |
Collapse
|
2
|
Dunton AD, Göpel T, Ho DH, Burggren W. Form and Function of the Vertebrate and Invertebrate Blood-Brain Barriers. Int J Mol Sci 2021; 22:ijms222212111. [PMID: 34829989 PMCID: PMC8618301 DOI: 10.3390/ijms222212111] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022] Open
Abstract
The need to protect neural tissue from toxins or other substances is as old as neural tissue itself. Early recognition of this need has led to more than a century of investigation of the blood-brain barrier (BBB). Many aspects of this important neuroprotective barrier have now been well established, including its cellular architecture and barrier and transport functions. Unsurprisingly, most research has had a human orientation, using mammalian and other animal models to develop translational research findings. However, cell layers forming a barrier between vascular spaces and neural tissues are found broadly throughout the invertebrates as well as in all vertebrates. Unfortunately, previous scenarios for the evolution of the BBB typically adopt a classic, now discredited 'scala naturae' approach, which inaccurately describes a putative evolutionary progression of the mammalian BBB from simple invertebrates to mammals. In fact, BBB-like structures have evolved independently numerous times, complicating simplistic views of the evolution of the BBB as a linear process. Here, we review BBBs in their various forms in both invertebrates and vertebrates, with an emphasis on the function, evolution, and conditional relevance of popular animal models such as the fruit fly and the zebrafish to mammalian BBB research.
Collapse
Affiliation(s)
- Alicia D. Dunton
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
- Correspondence:
| | - Torben Göpel
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
| | - Dao H. Ho
- Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, HI 96859, USA;
| | - Warren Burggren
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
| |
Collapse
|
3
|
Dehghani M, Xiao C, Money TGA, Shoemaker KL, Robertson RM. Protein expression following heat shock in the nervous system of Locusta migratoria. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1480-1488. [PMID: 21855549 DOI: 10.1016/j.jinsphys.2011.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 05/31/2023]
Abstract
There is a thermal range for the operation of neural circuits beyond which nervous system function is compromised. Locusta migratoria is native to the semiarid regions of the world and provides an excellent model for studying neural phenomena. In this organism previous exposure to sublethal high temperatures (heat shock, HS) can protect neuronal function against future hyperthermia but, unlike many organisms, the profound physiological adaptations are not accompanied by a robust increase of Hsp70 transcript or protein in the nervous system. We compared Hsp70 increase following HS in the tissues of isolated and gregarious locusts to investigate the effect of population density. We also localized Hsp70 in the metathoracic ganglion (MTG) of gregarious locusts to determine if HS affects Hsp70 in specific cell types that could be masked in whole ganglion assays. Our study indicated no evidence of a consistent change in Hsp70 level in the MTG of isolated locusts following HS. Also, Hsp70 was mainly localized in perineurium, neural membranes and glia and prior HS had no effect on its density or distribution. Finally, we applied 2-D gels to study the proteomic profile of MTG in gregarious locusts following HS; although these experiments showed some changes in the level of ATP-synthase β isoforms, the overall amount of this protein was found unchanged following HS. We conclude that the constitutive level of Hsps in the tissues of locusts is high. Also the thermoprotective effect of HS on the nervous system might be mediated by post-translational modifications or protein trafficking.
Collapse
Affiliation(s)
- Mehrnoush Dehghani
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | |
Collapse
|
4
|
Blauth K, Banerjee S, Bhat MA. Axonal ensheathment and intercellular barrier formation in Drosophila. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:93-128. [PMID: 20801419 DOI: 10.1016/s1937-6448(10)83003-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glial cells are critical players in every major aspect of nervous system development, function, and disease. Other than their traditional supportive role, glial cells perform a variety of important functions such as myelination, synapse formation and plasticity, and establishment of blood-brain and blood-nerve barriers in the nervous system. Recent studies highlight the striking functional similarities between Drosophila and vertebrate glia. In both systems, glial cells play an essential role in neural ensheathment thereby isolating the nervous system and help to create a local ionic microenvironment for conduction of nerve impulses. Here, we review the anatomical aspects and the molecular players that underlie ensheathment during different stages of nervous system development in Drosophila and how these processes lead to the organization of neuroglial junctions. We also discuss some key aspects of the invertebrate axonal ensheathment and junctional organization with that of vertebrate myelination and axon-glial interactions. Finally, we highlight the importance of intercellular junctions in barrier formation in various cellular contexts in Drosophila. We speculate that unraveling the genetic and molecular mechanisms of ensheathment across species might provide key insights into human myelin-related disorders and help in designing therapeutic interventions.
Collapse
Affiliation(s)
- Kevin Blauth
- Curriculum in Neurobiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | | | |
Collapse
|
5
|
Gocht D, Wagner S, Heinrich R. Recognition, presence, and survival of locust central nervous glia in situ and in vitro. Microsc Res Tech 2009; 72:385-97. [PMID: 19115332 DOI: 10.1002/jemt.20683] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Insect glial cells serve functions for the formation, maintenance, and performance of the central nervous system in ways similar to their vertebrate counterparts. Characterization of physiological mechanisms that underlie the roles of glia in invertebrates is largely incomplete, partly due to the lack of markers that universally label all types of glia throughout all developmental stages in various species. Studies on primary cell cultures from brains of Locusta migratoria demonstrated that the absence of anti-HRP immunoreactivity, which has previously been used to identify glial cells in undissociated brains, can also serve as a reliable glial marker in vitro, but only in combination with a viability test. As cytoplasmic membranes of cultured cells are prone to degradation when they lose viability, only cells that are both anti-HRP immunonegative and viable should be regarded as glial cells, whereas the lack of anti-HRP immunoreactivity alone is not sufficient. Cell viability can be assessed by the pattern of nuclear staining with DAPI (4',6-diamidino-2-phenylindole), a convenient, sensitive labeling method that can be used in combination with other immunocytochemical cellular markers. We determined the glia-to-neuron ratio in central brains of fourth nymphal stage of Locusta migratoria to be 1:2 both in situ and in dissociated primary cell cultures. Analysis of primary cell cultures revealed a progressive reduction of glial cells and indicated that dead cells detach from the substrate and vanish from the analysis. Such changes in the composition of cell cultures should be considered in future physiological studies on cell cultures from insect nervous systems.
Collapse
Affiliation(s)
- Daniela Gocht
- Department of Neurobiology, Institute for Zoology, University of Göttingen, Berliner Strasse 28, Göttingen, Germany
| | | | | |
Collapse
|
6
|
Armstrong GAB, Shoemaker KL, Money TGA, Robertson RM. Octopamine mediates thermal preconditioning of the locust ventilatory central pattern generator via a cAMP/protein kinase A signaling pathway. J Neurosci 2006; 26:12118-26. [PMID: 17122036 PMCID: PMC6675444 DOI: 10.1523/jneurosci.3347-06.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We investigated the role of biogenic amines in generating thermoprotection of the ventilatory motor pattern circuitry in Locusta migratoria. Levels of octopamine (OA) and dopamine (DA) in the metathoracic ganglion decreased during heat stress. We measured the thermosensitivity of central pattern generation in response to a ramped increase of temperature in semi-intact preparations. OA, DA, and tyramine (TA) were either bath applied or injected into the locust hemocoel 4-8 h before testing. Neither TA nor DA modified the thermotolerance of ventilatory motor pattern generation. However, OA treatment by bath applications (10(-4) M OA) or by injections into the hemocoel (2 microg/10 microl OA) mimicked heat shock preconditioning and improved the thermotolerance of the motor pattern by increasing the failure temperature and by decreasing the time taken to recover operation after a return to room temperature. Heat shock-induced thermoprotection was eradicated in locusts preinjected with epinastine (Oct betaR antagonist). Neuropil injections of the cAMP agonist and protein kinase A (PKA) activator, Sp-cAMPs, both conferred thermoprotection in control locusts and rescued thermoprotection in epinastine-treated HS locusts. Similar injections of the PKA inhibitor Rp-cAMPs blocked the thermoprotective effect of bath-applied OA. Octopamine-mediated thermoprotection was also abolished with neuropil injections of cycloheximide or actinomycin D, indicating a requirement for transcription and translation. We conclude that OA has a crucial role in triggering protein synthesis-dependent physiological adaptations to protect CNS function during heat stress by activating a cAMP/PKA pathway.
Collapse
Affiliation(s)
- Gary A B Armstrong
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | | | | | | |
Collapse
|
7
|
Armstrong GA, Meldrum Robertson R. A role for octopamine in coordinating thermoprotection of an insect nervous system. J Therm Biol 2006. [DOI: 10.1016/j.jtherbio.2005.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Abstract
Octopamine receptor subclasses were first proposed to explain differences in the pharmacological profiles of a range of physiological responses to octopamine obtained in the extensor-tibiae neuromuscular preparation of the locust. Thus, OCTOPAMINE1 receptors which inhibit an endogenous myogenic rhythm, increase intracellular calcium levels. Also OCTOPAMINE2 receptors which modulate neuromuscular transmission in this preparation, increase the level of adenylate cyclase activity. The current status of this classification is reviewed by examining the pharmacology of responses to octopamine in a range of preparations. It is concluded that the distinction between OCTOPAMINE1 and OCTOPAMINE2 receptor types is still valid, but that OCTOPAMINE2 receptors exhibit some tissue specific variations. Studies on a cloned Drosophila octopamine/tyramine (phentolamine) receptor are discussed and illustrate many of the difficulties presently encountered in making a definitive classification of octopamine receptors. These include the possibilities that single receptors may activate multiple second messenger systems and that different agonists may differentially couple the same receptor to different second messenger systems.
Collapse
Affiliation(s)
- P D Evans
- AFRC Laboratory of Molecular Signalling, Dept. of Zoology, University of Cambridge, UK
| | | |
Collapse
|
9
|
Abbott NJ. John Treherne (1929-1989): an appreciation. Ann N Y Acad Sci 1991; 633:xvi-xxii. [PMID: 1789540 DOI: 10.1111/j.1749-6632.1991.tb15589.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- N J Abbott
- Biomedical Sciences Division, King's College, Strand, London, UK
| |
Collapse
|
10
|
Evans PD, Reale V, Merzon RM, Villegas J. Mechanisms of axon-Schwann cell signaling in the squid nerve fiber. Ann N Y Acad Sci 1991; 633:434-47. [PMID: 1665034 DOI: 10.1111/j.1749-6632.1991.tb15634.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- P D Evans
- Department of Zoology, University of Cambridge, UK
| | | | | | | |
Collapse
|
11
|
Abstract
Unitary currents through single ion channels in the glial cells, which ensheath the abdominal stretch receptor neurons of the crayfish, were characterized with respect to their basic kinetic properties. In cell-attached and excised patches two types of Ca(++)-independent K+ channels were observed with slope conductances of 57 pS and 96 pS in symmetrical K+ solution. The 57 pS K+ channel was weakly voltage-dependent with a slope of the Po vs. membrane potential relationship of +95 mV for an e-fold change in Po. In addition to the main conductance level, the channel displayed conductance levels of 80 and 109 pS. In excised patches, channel activity of this "subconductance" K+ channel showed "rundown" that could be prevented with 2 mM ATP-Mg on the cytoplasmic side of the membrane. The 96 pS K+ channel was strongly voltage-dependent with a slope of +12 mV for an e-fold change in Po. Averaged single-channel currents elicited by voltage jumps proved the channel to be of the delayed rectifying type. Channel activity persisted in excised patches with minimal salt solution and in virtually Ca(++)-free saline. Because of its dependence on intracellular ATP-Mg, the subconductance K+ channel is discussed as a target of modulation by transmitters or peptides via phosphorylation of the channel.
Collapse
Affiliation(s)
- C Erxleben
- Department of Biology, University of Konstanz, Federal Republic of Germany
| |
Collapse
|
12
|
Fast flickering of a potassium channel in glial cells from the cockroach central nervous system. ACTA ACUST UNITED AC 1988. [DOI: 10.1016/0300-9629(88)91119-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|