1
|
Lemon JA, Aksenov V, Samigullina R, Aksenov S, Rodgers WH, Rollo CD, Boreham DR. A multi-ingredient dietary supplement abolishes large-scale brain cell loss, improves sensory function, and prevents neuronal atrophy in aging mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:382-404. [PMID: 27199101 DOI: 10.1002/em.22019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/14/2016] [Indexed: 06/05/2023]
Abstract
Transgenic growth hormone mice (TGM) are a recognized model of accelerated aging with characteristics including chronic oxidative stress, reduced longevity, mitochondrial dysfunction, insulin resistance, muscle wasting, and elevated inflammatory processes. Growth hormone/IGF-1 activate the Target of Rapamycin known to promote aging. TGM particularly express severe cognitive decline. We previously reported that a multi-ingredient dietary supplement (MDS) designed to offset five mechanisms associated with aging extended longevity, ameliorated cognitive deterioration and significantly reduced age-related physical deterioration in both normal mice and TGM. Here we report that TGM lose more than 50% of cells in midbrain regions, including the cerebellum and olfactory bulb. This is comparable to severe Alzheimer's disease and likely explains their striking age-related cognitive impairment. We also demonstrate that the MDS completely abrogates this severe brain cell loss, reverses cognitive decline and augments sensory and motor function in aged mice. Additionally, histological examination of retinal structure revealed markers consistent with higher numbers of photoreceptor cells in aging and supplemented mice. We know of no other treatment with such efficacy, highlighting the potential for prevention or amelioration of human neuropathologies that are similarly associated with oxidative stress, inflammation and cellular dysfunction. Environ. Mol. Mutagen. 57:382-404, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- J A Lemon
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton ON, Canada, L8S 4K1
| | - V Aksenov
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton ON, Canada, L8S 4K1
| | - R Samigullina
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton ON, Canada, L8S 4K1
| | - S Aksenov
- Department of Pathology, New York-Presbyterian/Queens Hospital, 56-45 Main Street, Flushing, New York, 11355
| | - W H Rodgers
- Department of Pathology, New York-Presbyterian/Queens Hospital, 56-45 Main Street, Flushing, New York, 11355
| | - C D Rollo
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton ON, Canada, L8S 4K1
| | - D R Boreham
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton ON, Canada, L8S 4K1
- Medical Sciences Division, Northern Ontario School of Medicine, 935 Ramsey Lake Road, Sudbury ON, Canada, P3E 2C6
| |
Collapse
|
2
|
Egorova PA, Karelina TV, Vlasova OL, Antonov SM, Bezprozvanny IB. The effect of SK channel modulators on the simple spike firing frequency in discharge of cerebellar Purkinje cells in laboratory mice. J EVOL BIOCHEM PHYS+ 2014. [DOI: 10.1134/s0022093014020045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Yates BJ, Catanzaro MF, Miller DJ, McCall AA. Integration of vestibular and emetic gastrointestinal signals that produce nausea and vomiting: potential contributions to motion sickness. Exp Brain Res 2014; 232:2455-69. [PMID: 24736862 DOI: 10.1007/s00221-014-3937-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/25/2014] [Indexed: 12/23/2022]
Abstract
Vomiting and nausea can be elicited by a variety of stimuli, although there is considerable evidence that the same brainstem areas mediate these responses despite the triggering mechanism. A variety of experimental approaches showed that nucleus tractus solitarius, the dorsolateral reticular formation of the caudal medulla (lateral tegmental field), and the parabrachial nucleus play key roles in integrating signals that trigger nausea and vomiting. These brainstem areas presumably coordinate the contractions of the diaphragm and abdominal muscles that result in vomiting. However, it is unclear whether these regions also mediate the autonomic responses that precede and accompany vomiting, including alterations in gastrointestinal activity, sweating, and changes in blood flow to the skin. Recent studies showed that delivery of an emetic compound to the gastrointestinal system affects the processing of vestibular inputs in the lateral tegmental field and parabrachial nucleus, potentially altering susceptibility for vestibular-elicited vomiting. Findings from these studies suggested that multiple emetic inputs converge on the same brainstem neurons, such that delivery of one emetic stimulus affects the processing of another emetic signal. Despite the advances in understanding the neurobiology of nausea and vomiting, much is left to be learned. Additional neurophysiologic studies, particularly those conducted in conscious animals, will be crucial to discern the integrative processes in the brain stem that result in emesis.
Collapse
Affiliation(s)
- Bill J Yates
- Department of Otolaryngology, Eye and Ear Institute, University of Pittsburgh, Room 519, Pittsburgh, PA, 15213, USA,
| | | | | | | |
Collapse
|
4
|
Catanzaro MF, Miller DJ, Cotter LA, McCall AA, Yates BJ. Integration of vestibular and gastrointestinal inputs by cerebellar fastigial nucleus neurons: multisensory influences on motion sickness. Exp Brain Res 2014; 232:2581-9. [PMID: 24677139 DOI: 10.1007/s00221-014-3898-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/25/2014] [Indexed: 12/14/2022]
Abstract
Previous studies demonstrated that ingestion of the emetic compound copper sulfate (CuSO4) alters the responses to vestibular stimulation of a large fraction of neurons in brainstem regions that mediate nausea and vomiting, thereby affecting motion sickness susceptibility. Other studies suggested that the processing of vestibular inputs by cerebellar neurons plays a critical role in generating motion sickness and that neurons in the cerebellar fastigial nucleus receive visceral inputs. These findings raised the hypothesis that stimulation of gastrointestinal receptors by a nauseogenic compound affects the processing of labyrinthine signals by fastigial nucleus neurons. We tested this hypothesis in decerebrate cats by determining the effects of intragastric injection of CuSO4 on the responses of rostral fastigial nucleus to whole-body rotations that activate labyrinthine receptors. Responses to vestibular stimulation of fastigial nucleus neurons were more complex in decerebrate cats than reported previously in conscious felines. In particular, spatiotemporal convergence responses, which reflect the convergence of vestibular inputs with different spatial and temporal properties, were more common in decerebrate than in conscious felines. The firing rate of a small percentage of fastigial nucleus neurons (15%) was altered over 50% by the administration of CuSO4; the firing rate of the majority of these cells decreased. The responses to vestibular stimulation of a majority of these cells were attenuated after the compound was provided. Although these data support our hypothesis, the low fraction of fastigial nucleus neurons whose firing rate and responses to vestibular stimulation were affected by the administration of CuSO4 casts doubt on the notion that nauseogenic visceral inputs modulate motion sickness susceptibility principally through neural pathways that include the cerebellar fastigial nucleus. Instead, it appears that convergence of gastrointestinal and vestibular inputs occurs mainly in the brainstem.
Collapse
Affiliation(s)
- Michael F Catanzaro
- Department of Otolaryngology, University of Pittsburgh, Room 519, Eye and Ear Institute, Pittsburgh, PA, 15213, USA
| | | | | | | | | |
Collapse
|
5
|
Arshian MS, Puterbaugh SR, Miller DJ, Catanzaro MF, Hobson CE, McCall AA, Yates BJ. Effects of visceral inputs on the processing of labyrinthine signals by the inferior and caudal medial vestibular nuclei: ramifications for the production of motion sickness. Exp Brain Res 2013; 228:353-63. [PMID: 23712685 DOI: 10.1007/s00221-013-3568-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/06/2013] [Indexed: 02/06/2023]
Abstract
Neurons located in the caudal aspect of the vestibular nucleus complex have been shown to receive visceral inputs and project to brainstem regions that participate in generating emesis, such as nucleus tractus solitarius and the "vomiting region" in the lateral tegmental field (LTF). Consequently, it has been hypothesized that neurons in the caudal vestibular nuclei participate in triggering motion sickness and that visceral inputs to the vestibular nucleus complex can affect motion sickness susceptibility. To obtain supporting evidence for this hypothesis, we determined the effects of intragastric infusion of copper sulfate (CuSO4) on responses of neurons in the inferior and caudal medial vestibular nuclei to rotations in vertical planes. CuSO4 readily elicits nausea and emesis by activating gastrointestinal (GI) afferents. Infusion of CuSO4 produced a >30 % change in spontaneous firing rate of approximately one-third of neurons in the caudal aspect of the vestibular nucleus complex. These changes in firing rate developed over several minutes, presumably in tandem with the emetic response. The gains of responses to vertical vestibular stimulation of a larger fraction (approximately two-thirds) of caudal vestibular nucleus neurons were altered over 30 % by administration of CuSO4. The response gains of some units went up, and others went down, and there was no significant relationship with concurrent spontaneous firing rate change. These findings support the notion that the effects of visceral inputs on motion sickness susceptibility are mediated in part through the caudal vestibular nuclei. However, our previous studies showed that infusion of CuSO4 produced larger changes in response to vestibular stimulation of LTF neurons, as well as parabrachial nucleus neurons that are believed to participate in generating nausea. Thus, integrative effects of GI inputs on the processing of labyrinthine inputs must occur at brain sites that participate in eliciting motion sickness in addition to the caudal vestibular nuclei. It seems likely that the occurrence of motion sickness requires converging inputs to brain areas that generate nausea and vomiting from a variety of regions that process vestibular signals.
Collapse
Affiliation(s)
- Milad S Arshian
- Department of Otolaryngology, Eye and Ear Institute, University of Pittsburgh, Room 519, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Lee GP, Meador KJ, Loring DW, Allison JD, Brown WS, Paul LK, Pillai JJ, Lavin TB. Neural substrates of emotion as revealed by functional magnetic resonance imaging. Cogn Behav Neurol 2004; 17:9-17. [PMID: 15209221 DOI: 10.1097/00146965-200403000-00002] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To examine the brain circuitry involved in emotional experience and determine whether the cerebral hemispheres are specialized for positive and negative emotional experience. BACKGROUND Recent research has provided a preliminary sketch of the neurologic underpinnings of emotional processing involving specialized contributions of limbic and cortical brain regions. Electrophysiologic, functional imaging, and Wada test data have suggested positive, approach-related emotions are associated with left cerebral hemisphere regions, whereas negative, withdrawal-related emotions appear to be more aligned with right hemisphere mechanisms. METHOD These emotional-neural associations were investigated using functional magnetic resonance imaging in 10 healthy controls with 20 positively and 20 negatively valenced pictures from the International Affective Picture System in a counterbalanced order. Pictures were viewed within a 1.5 Telsa scanner through computerized video goggles. RESULTS Emotional pictures resulted in significantly increased blood flow bilaterally in the mesial frontal lobe/anterior cingulate gyrus, dorsolateral frontal lobe, amygdala/anterior temporal regions, and cerebellum. Negative emotional pictures resulted in greater activation of the right hemisphere, and positive pictures caused greater activation of the left hemisphere. CONCLUSIONS Results are consistent with theories emphasizing the importance of circuitry linking subcortical structures with mesial temporal, anterior cingulate, and frontal lobe regions in emotion and with the valence model of emotion that posits lateralized cerebral specialization for positive and negative emotional experience.
Collapse
Affiliation(s)
- Gregory P Lee
- Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912-3275, USA.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
The kidney and the autonomic nervous system are linked through renal nerves. Activation of efferent renal sympathetic nerves leads to changes in renal vascular resistance, renin release, and Na(+) and water retention. Evidence also exists indicating that the kidney is not just a target organ of sympathetic activity, but also acts as a sensor. Afferent renal nerves have been shown to carry information from renal chemoreceptors, which respond to changes in the composition of the interstitial fluid environment, and mechanoreceptors, which monitor hydrostatic pressure changes within the kidney, to the central nervous system. These afferent renal nerve inputs alter the activity of central integrative neuronal circuits that normally give rise to command signals that influence the function of effector organs. Renal receptors, through their connections at different levels of the neuraxis, are able to reflexly influence not only cardiovascular function through changes in sympathetic nerve discharge to a variety of vascular beds and the hypothalamic release of vasopressin, but also the function of the kidney. This increased sympathetic activity and hormonal release induced by activation of afferent renal nerves has been implicated in hypertension of diverse etiologies.
Collapse
Affiliation(s)
- John Ciriello
- Department of Physiology, Faculty of Medicine and Dentistry, Health Sciences Centre, University of Western Ontario, London, Ontario N6A 5C1, Canada.
| | | |
Collapse
|
8
|
Bobée S, Mariette E, Tremblay-Leveau H, Caston J. Effects of early midline cerebellar lesion on cognitive and emotional functions in the rat. Behav Brain Res 2000; 112:107-17. [PMID: 10862941 DOI: 10.1016/s0166-4328(00)00166-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Midline lesion of the cerebellum was performed in young 10-day-old DA/HAN strained (pigmented) rats. Once adults, the lesioned animals were subjected to a series of behavioral tests and their performances were compared with those of control (nonlesioned) rats. Compared with controls, the spontaneous motor activity of the lesioned rats was higher, they showed persevering behavior and did not pay attention to environmental distractors. In anxiety and social discrimination tests, disinhibition tendencies were obvious, which suggested that the animals were less dependent on the context. These abnormalities were most likely due to early midline lesion of the cerebellum and not to a deficit in maternal care before weaning, since the dams took care of the lesioned and control pups similarly. From these results, it can be concluded that the cerebellar vermis is involved in motor control, attentional capabilities and emotional behavior. Given that the lesioned rats observed in this study presented obvious autistic-like symptoms, and since a number of autistic subjects have cerebellar deficits and, particularly, a hypoplasia of vermal lobules, our results may strengthen the idea that the cerebellar vermis is involved in autism, as already suggested in the guinea pig (Caston J, et al. Eur J Neurosci 1998;10:2677-2684).
Collapse
Affiliation(s)
- S Bobée
- Laboratoire de Neurobiologie de l'Apprentissage, Faculté des Sciences, Université de Rouen, UPRES PSY.CO.-EA 1780, 76821, Mont-Saint-Aignan Cedex, France
| | | | | | | |
Collapse
|