1
|
Li H, Gao Y, Zou Y, Qiao S, Zhi W, Ma L, Xu X, Zhao X, Zhang J, Wang L, Hu X. Associations Between a Polymorphism in the Rat 5-HT1A Receptor Gene Promoter Region (rs198585630) and Cognitive Alterations Induced by Microwave Exposure. Front Public Health 2022; 10:802386. [PMID: 35252088 PMCID: PMC8891156 DOI: 10.3389/fpubh.2022.802386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
The nervous system is a sensitive target of electromagnetic radiation (EMR). Chronic microwave exposure can induce cognitive deficits, and 5-HT system is involved in this effect. Genetic polymorphisms lead to individual differences. In this study, we evaluated whether the single-nucleotide polymorphism (SNP) rs198585630 of 5-HT1A receptor is associated with cognitive alterations in rats after microwave exposure with a frequency of 2.856 GHz and an average power density of 30 mW/cm2. Rats were exposed to microwaves for 6 min three times a week for up to 6 weeks. PC12 cells and 293T cells were exposed to microwaves for 5 min up to 3 times at 2 intervals of 5 min. Transcriptional activity of 5-HT1A receptor promoter containing rs198585630 C/T allele was determined in vitro. Electroencephalograms (EEGs), spatial learning and memory, and mRNA and protein expression of 5-HT1A receptor were evaluated in vivo. We demonstrated that transcriptional activity of 5-HT1A receptor promoter containing rs198585630 C allele was higher than that of 5-HT1A receptor promoter containing T allele. The transcriptional activity of 5-HT1A receptor promoter was stimulated by 30 mW/cm2 microwave exposure, and rs198585630 C allele was more sensitive to microwave exposure, as it showed stronger transcriptional activation. Rats carrying rs198585630 C allele exhibited increased mRNA and protein expression of 5-HT1A receptor and were more susceptible to 30 mW/cm2 microwave exposure, showing cognitive deficits and inhibition of brain electrical activity. These findings suggest SNP rs198585630 of the 5-HT1A receptor is an important target for further research exploring the mechanisms of hypersensitivity to microwave exposure.
Collapse
Affiliation(s)
- Haijuan Li
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yu Gao
- Department of Urology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yong Zou
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Simo Qiao
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Weijia Zhi
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Lizhen Ma
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xinping Xu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xuelong Zhao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Junhua Zhang
- Department of Emergency, Jingxi Medical District of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lifeng Wang
- Beijing Institute of Radiation Medicine, Beijing, China
- *Correspondence: Lifeng Wang
| | - Xiangjun Hu
- Beijing Institute of Radiation Medicine, Beijing, China
- Xiangjun Hu
| |
Collapse
|
2
|
Klaassens BL, van Gerven JMA, Klaassen ES, van der Grond J, Rombouts SARB. Cholinergic and serotonergic modulation of resting state functional brain connectivity in Alzheimer's disease. Neuroimage 2019; 199:143-152. [PMID: 31112788 DOI: 10.1016/j.neuroimage.2019.05.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 11/19/2022] Open
Abstract
Disruption of cholinergic and serotonergic neurotransmitter systems is associated with cognitive, emotional and behavioural symptoms of Alzheimer's disease (AD). To investigate the responsiveness of these systems in AD we measured the effects of a single-dose of the selective serotonin reuptake inhibitor citalopram and acetylcholinesterase inhibitor galantamine in 12 patients with AD and 12 age-matched controls on functional brain connectivity with resting state functional magnetic resonance imaging. In this randomized, double blind, placebo-controlled crossover study, functional magnetic resonance images were repeatedly obtained before and after dosing, resulting in a dataset of 432 scans. Connectivity maps of ten functional networks were extracted using a dual regression method and drug vs. placebo effects were compared between groups with a multivariate analysis with signals coming from cerebrospinal fluid and white matter as covariates at the subject level, and baseline and heart rate measurements as confound regressors in the higher-level analysis (at p < 0.05, corrected). A galantamine induced difference between groups was observed for the cerebellar network. Connectivity within the cerebellar network and between this network and the thalamus decreased after galantamine vs. placebo in AD patients, but not in controls. For citalopram, voxelwise network connectivity did not show significant group × treatment interaction effects. However, we found default mode network connectivity with the precuneus and posterior cingulate cortex to be increased in AD patients, which could not be detected within the control group. Further, in contrast to the AD patients, control subjects showed a consistent reduction in mean connectivity with all networks after administration of citalopram. Since AD has previously been characterized by reduced connectivity between the default mode network and the precuneus and posterior cingulate cortex, the effects of citalopram on the default mode network suggest a restoring potential of selective serotonin reuptake inhibitors in AD. The results of this study also confirm a change in cerebellar connections in AD, which is possibly related to cholinergic decline.
Collapse
Affiliation(s)
- Bernadet L Klaassens
- Leiden University, Institute of Psychology, Leiden, the Netherlands; Leiden University Medical Center, Department of Radiology, Leiden, the Netherlands; Leiden University, Leiden Institute for Brain and Cognition, Leiden, the Netherlands; Centre for Human Drug Research, Leiden, the Netherlands.
| | | | | | - Jeroen van der Grond
- Leiden University Medical Center, Department of Radiology, Leiden, the Netherlands
| | - Serge A R B Rombouts
- Leiden University, Institute of Psychology, Leiden, the Netherlands; Leiden University Medical Center, Department of Radiology, Leiden, the Netherlands; Leiden University, Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| |
Collapse
|
3
|
Li Y, Pehrson AL, Waller JA, Dale E, Sanchez C, Gulinello M. A critical evaluation of the activity-regulated cytoskeleton-associated protein (Arc/Arg3.1)'s putative role in regulating dendritic plasticity, cognitive processes, and mood in animal models of depression. Front Neurosci 2015; 9:279. [PMID: 26321903 PMCID: PMC4530346 DOI: 10.3389/fnins.2015.00279] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/23/2015] [Indexed: 11/13/2022] Open
Abstract
Major depressive disorder (MDD) is primarily conceptualized as a mood disorder but cognitive dysfunction is also prevalent, and may limit the daily function of MDD patients. Current theories on MDD highlight disturbances in dendritic plasticity in its pathophysiology, which could conceivably play a role in the production of both MDD-related mood and cognitive symptoms. This paper attempts to review the accumulated knowledge on the basic biology of the activity-regulated cytoskeleton-associated protein (Arc or Arg3.1), its effects on neural plasticity, and how these may be related to mood or cognitive dysfunction in animal models of MDD. On a cellular level, Arc plays an important role in modulating dendritic spine density and remodeling. Arc also has a close, bidirectional relationship with postsynaptic glutamate neurotransmission, since it is stimulated by multiple glutamatergic receptor mechanisms but also modulates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor internalization. The effects on AMPA receptor trafficking are likely related to Arc's ability to modulate phenomena such as long-term potentiation, long-term depression, and synaptic scaling, each of which are important for maintaining proper cognitive function. Chronic stress models of MDD in animals show suppressed Arc expression in the frontal cortex but elevation in the amygdala. Interestingly, cognitive tasks depending on the frontal cortex are generally impaired by chronic stress, while those depending on the amygdala are enhanced, and antidepressant treatments stimulate cortical Arc expression with a timeline that is reminiscent of the treatment efficacy lag observed in the clinic or in preclinical models. However, pharmacological treatments that stimulate regional Arc expression do not universally improve relevant cognitive functions, and this highlights a need to further refine our understanding of Arc on a subcellular and network level.
Collapse
Affiliation(s)
- Yan Li
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Inc. Paramus, NJ, USA
| | - Alan L Pehrson
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Inc. Paramus, NJ, USA
| | - Jessica A Waller
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Inc. Paramus, NJ, USA
| | - Elena Dale
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA, Inc. Paramus, NJ, USA
| | - Connie Sanchez
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Inc. Paramus, NJ, USA
| | - Maria Gulinello
- Behavioral Core Facility, Department of Neuroscience, Albert Einstein College of Medicine Bronx, NY, USA
| |
Collapse
|
4
|
Aboukhatwa M, Dosanjh L, Luo Y. Antidepressants are a rational complementary therapy for the treatment of Alzheimer's disease. Mol Neurodegener 2010; 5:10. [PMID: 20226030 PMCID: PMC2845130 DOI: 10.1186/1750-1326-5-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 03/12/2010] [Indexed: 12/17/2022] Open
Abstract
There is a high prevalence rate (30-50%) of Alzheimer's disease (AD) and depression comorbidity. Depression can be a risk factor for the development of AD or it can be developed secondary to the neurodegenerative process. There are numerous documented diagnosis and treatment challenges for the patients who suffer comorbidity between these two diseases. Meta analysis studies have provided evidence for the safety and efficacy of antidepressants in treatment of depression in AD patients. Preclinical and clinical studies show the positive role of chronic administration of selective serotonin reuptake inhibitor (SSRI) antidepressants in hindering the progression of the AD and improving patient performance. A number of clinical studies suggest a beneficial role of combinatorial therapies that pair antidepressants with FDA approved AD drugs. Preclinical studies also demonstrate a favorable effect of natural antidepressants for AD patients. Based on the preclinical studies there are a number of plausible antidepressants effects that may modulate the progression of AD. These effects include an increase in neurogenesis, improvement in learning and memory, elevation in the levels of neurotrophic factors and pCREB and a reduction of amyloid peptide burden. Based on this preclinical and clinical evidence, antidepressants represent a rational complimentary strategy for the treatment of AD patients with depression comorbidity.
Collapse
Affiliation(s)
- Marwa Aboukhatwa
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 N Pine St, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
5
|
Mowla A, Mosavinasab M, Haghshenas H, Borhani Haghighi A. Does serotonin augmentation have any effect on cognition and activities of daily living in Alzheimer's dementia? A double-blind, placebo-controlled clinical trial. J Clin Psychopharmacol 2007; 27:484-7. [PMID: 17873681 DOI: 10.1097/jcp.0b013e31814b98c1] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Recent studies suggest that cholinergic dysfunction does not provide a complete account of age-related cognitive deficits, and other neuronal systems like monoaminergic hypofunction are involved. In several studies, selective serotonin reuptake inhibitors demonstrated promotion in neurogenesis in the hippocampus and enhanced memory and cognition. The aim of this study is to survey the effect of serotonin augmentation on cognition and activities of daily living in patients with Alzheimer's disease. METHOD The trial was designed as a 12-week randomized, placebo-controlled, double-blind study. One hundred twenty-two patients aged 55 to 85 years with mild-to-moderate Alzheimer's dementia were randomly allocated in 1 of the 3 treatment groups: fluoxetine plus rivastigmine, rivastigmine alone, or placebo group. Efficacy measures comprised assessments of cognition, activities of daily living, and global functioning. Hamilton Depression Scale also was used to assess changes in mood throughout the study. RESULT Fluoxetine plus rivastigmine and rivastigmine groups demonstrated improvement on measures of cognitive and memory without any significant difference; however, the former group did better in their activities of daily living and global functioning. Patients taking placebo had significant deterioration in all the efficacy measures. Patients taking rivastigmine or rivastigmine plus fluoxetine had improvements in Hamilton Depression Scale without significant differences. CONCLUSIONS Concomitant use of selective serotonin-enhancing agents and acetyl cholinesterase inhibitors can provide greater benefit in activities of daily living and global functioning in patients with cognitive impairment. Because our study is preliminary, larger double-blind studies are needed to confirm the results.
Collapse
Affiliation(s)
- Arash Mowla
- Department of Psychiatry, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | | | | |
Collapse
|
6
|
Lazaris A, Bertrand F, Lazarus C, Galani R, Stemmelin J, Poirier R, Kelche C, Cassel JC. Baseline and 8-OH-DPAT-induced release of acetylcholine in the hippocampus of aged rats with different levels of cognitive dysfunction. Brain Res 2003; 967:181-90. [PMID: 12650979 DOI: 10.1016/s0006-8993(02)04272-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
During aging, neurotransmission systems such as the cholinergic and serotonergic ones are altered. Using rats aged 3 or 24-26 months, this study investigated whether the well-described 8-OH-DPAT-induced increase of hippocampal acetylcholine release was altered in aged rats and whether it may vary according to the magnitude of age-related cognitive deficits. Long-Evans female rats aged 24-26 months were classified as good or bad performers on the basis of their reference-memory performance in a Morris water-maze task. Subsequently, the efficiency of 5-HT(1A) receptor agonist 8-OH-DPAT (0.5 mg/kg, s.c.) in triggering hippocampal acetylcholine release was evaluated by in vivo microdialysis and high performance liquid chromatography analysis. Besides a reduced baseline release in aged rats and a correlation between the baseline release and probe-trial performance in all rats, the results demonstrated that 8-OH-DPAT produced a significant increase of hippocampal acetylcholine release (peak value) in all rats, whether aged or young. While significant in bad performers (+56%), this increase did not reach significance in good performers (+32%). The results suggest that (i) some aspects of cognitive alterations related to aging might be linked to the baseline release of acetylcholine in the hippocampus, and (ii) the cholinergic innervation of the hippocampus of aged rats responds almost normally to systemic activation of 5-HT(1A) receptors, and (iii) differential alterations of cholinergic/serotonergic interactions assessed by determination of the 8-OH-DPAT-induced release of acetylcholine in the hippocampus could not be linked with clarity to the cognitive status of aged rats.
Collapse
Affiliation(s)
- Anelise Lazaris
- Laboratoire de Neurosciences Comportementales et Cognitives, U.M.R. 7521 Université Louis Pasteur/Centre National de la Recherche Scientifique, I.F.R. 37 de Neurosciences, 12 rue Goethe, 67000 Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
This review focuses on nicotinic--serotonergic interactions in the central nervous system (CNS). Nicotine increases 5-hydroxytryptamine (5-HT) release in the cortex, striatum, hippocampus, dorsal raphé nucleus (DRN), hypothalamus, and spinal cord. As yet, there is little firm evidence for nicotinic receptors on serotonergic terminals and thus nicotine's effects on 5-HT may not necessarily be directly mediated, but there is strong evidence that the 5-HT tone plays a permissive role in nicotine's effects. The effects in the cortex, hippocampus, and DRN involve stimulation of 5-HT(1A) receptors, and in the striatum, 5-HT(3) receptors. The 5-HT(1A) receptors in the DRN play a role in mediating the anxiolytic effects of nicotine and the 5-HT(1A) receptors in the dorsal hippocampus and lateral septum mediate its anxiogenic effects. The increased startle and anxiety during nicotine withdrawal is mediated by 5-HT(1A) and 5-HT(3) receptors. The locomotor stimulant effect of acute nicotine is mediated by 5-HT(1A) receptors and 5-HT(2) receptors may play a role in the expression of a sensitised response after chronic nicotine treatment. Unfortunately, the role of 5-HT(1A) receptors in mediating nicotine seeking has not yet been investigated and would seem an important area for future research. There is also evidence for nicotinic--serotonergic interactions in the acquisition of the water maze, passive avoidance, and impulsivity in the five-choice serial reaction task.
Collapse
Affiliation(s)
- Pallab Seth
- Psychopharmacology Research Unit, Centre for Neuroscience, GKT School of Biomedical Sciences, King's College London, Hodgkin Building, Guy's Campus, SE1 1UL, London, UK
| | | | | | | |
Collapse
|
8
|
Cheeta S, Kenny PJ, File SE. The role of 5-HT1A receptors in mediating the anxiogenic effects of nicotine following lateral septal administration. Eur J Neurosci 2000; 12:3797-802. [PMID: 11029650 DOI: 10.1046/j.1460-9568.2000.00246.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The purpose of the present study was to determine the role of the 5-HT1A receptors in the lateral septum in the mediation of the anxiogenic effects of nicotine in the social interaction and elevated plus maze tests of anxiety in the rat. Bilateral infusion of (-)-nicotine (4 and 8 microg) and of the 5-HT1A receptor agonist 8-OH-DPAT (200 and 500 ng) into the lateral septum decreased the time spent in social interaction, indicating anxiogenic effects. The anxiogenic effect of 8-OH-DPAT (500 ng) was completely reversed by coadministration of a behaviourally inactive dose of the 5-HT1A receptor antagonist, WAY 100635 (200 ng). The anxiogenic effect of the lower dose of (-)-nicotine (4 microg) was completely reversed by WAY 100635 (200 ng), but the reversal was only partial following administration of 8 microg nicotine. In a second test of anxiety, the elevated plus maze, lateral septal administration of 8-OH-DPAT (500 ng) and nicotine (4 microg) induced anxiogenic effects. In this test, the anxiogenic effect of nicotine (4 microg) was completely reversed by coadministration of WAY 100635 (200 ng). The effects of 8-OH-DPAT demonstrate that stimulation of 5-HT1A receptors in the lateral septum has anxiogenic effects in two animal tests and that the anxiogenic effects of nicotine are mediated at least in part by these 5-HT1A receptors.
Collapse
Affiliation(s)
- S Cheeta
- Psychopharmacology Research Unit, Centre for Neuroscience, GKT School of Biomedical Sciences, King's College London, Hodgkin Building, Guy's Campus, London SE1 1UL, UK
| | | | | |
Collapse
|
9
|
Kenny PJ, Cheeta S, File SE. Anxiogenic effects of nicotine in the dorsal hippocampus are mediated by 5-HT1A and not by muscarinic M1 receptors. Neuropharmacology 2000; 39:300-7. [PMID: 10670425 DOI: 10.1016/s0028-3908(99)00114-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
After direct administration into the dorsal hippocampus nicotine decreased the time spent in social interaction, without changing locomotor activity, indicating an anxiogenic effect. The possibility that post-synaptic M1 muscarinic receptors mediated this effect was examined by determining whether dorsal hippocampal administration of a specific M1 receptor agonist (McN-A-343) had anxiogenic effects, and whether the anxiogenic effect of nicotine could be reversed by co-administration of the M1 receptor antagonist, pirenzepine. McN-A-343 (0.3, 1.6, 3.2, 15.8 nmol) was without effect on social interaction, and pirenzepine (0.7 and 2.4 nmol) injection into the dorsal hippocampus failed to reverse the decrease in social interaction caused by nicotine (6.3 nmol) injection into this area. However, the decrease in social interaction after nicotine (50 nmol) was completely reversed by the specific 5-HT1A receptor antagonist, WAY 100635 (0.4 nmol) after co-administration of both drugs into the dorsal hippocampus. Thus, the anxiogenic effect of nicotine in this brain region seems to be mediated by 5-HT1A, but not M1, receptors. In contrast to the effect of nicotine in naive animals, those retested after a second injection of 50 nmol did not show a significant anxiogenic effect. The theoretical implications of this are discussed and from a practical point of view this suggests caution in the retesting of animals after central injections.
Collapse
Affiliation(s)
- P J Kenny
- Neuroscience Research Centre, GKT School of Biomedical Sciences, King's College London, UK
| | | | | |
Collapse
|
10
|
Kikusui T, Tonohiro T, Kaneko T. The allocentric place discrimination task is selectively and highly dependent on the central muscarinic system in rats. Pharmacol Biochem Behav 2000; 65:131-9. [PMID: 10638646 DOI: 10.1016/s0091-3057(99)00203-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The allocentric place discrimination task (APDT) is useful in evaluating working memory separately from and simultaneously with motivation, motor and sensory ability. Muscarinic acetylcholine receptor antagonist scopolamine has been shown to selectively impair the accuracy of APDT without changing swimming speed, distance, and still time. For further evaluation of other neurotransmitters' roles in the APDT, pharmacological manipulations were performed. Neither diazepam 3.0 mg/kg, mecamylamine 10 mg/kg, haloperidol 0.5 mg/kg, nor 8-OH DPAT 1.0 mg/kg affected accuracy of place discrimination. Two kinds of responses were observed following the administration of MK-801 0.3 mg/kg: the accuracy of rats for longer swimming distance tended to decrease, and the accuracy of rats for normal swimming distance did not change. Therefore, NM-801 did not seem to affect the working memory selectively. In addition, neither flumazenil 10 mg/kg, ondansetron 0.3 mg/kg nor R(-)-alpha-metylhistamine 10 mg/kg attenuated the scopolamine-induced deficits. These results suggest that the central muscarinic receptors are selectively and highly important in the APDT.
Collapse
Affiliation(s)
- T Kikusui
- Neuroscience Research Laboratories, Sankyo Co., Ltd., Tokyo, Japan.
| | | | | |
Collapse
|
11
|
Terry A, Buccafusco J, Prendergast M. Dose‐specific improvements in memory‐related task performance by rats and aged monkeys administered the nicotinic‐cholinergic antagonist mecamylamine. Drug Dev Res 1999. [DOI: 10.1002/(sici)1098-2299(199907)47:3<127::aid-ddr3>3.0.co;2-#] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- A.V. Terry
- University of Georgia College of Pharmacy, Medical College of Georgia, Augusta, Georgia
- Alzheimer's Research Center, and Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, Georgia
- Department of Veterans Affairs Medical Center, Augusta, Georgia
| | - J.J. Buccafusco
- Alzheimer's Research Center, and Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, Georgia
- Department of Veterans Affairs Medical Center, Augusta, Georgia
| | - M.A. Prendergast
- Tobacco and Health Research Institute, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
12
|
Balse E, Lazarus C, Kelche C, Jeltsch H, Jackisch R, Cassel JC. Intrahippocampal grafts containing cholinergic and serotonergic fetal neurons ameliorate spatial reference but not working memory in rats with fimbria-fornix/cingular bundle lesions. Brain Res Bull 1999; 49:263-72. [PMID: 10424846 DOI: 10.1016/s0361-9230(99)00058-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Three-month-old Long-Evans female rats sustained aspirative lesions of the dorsal septohippocampal pathways and, 2 weeks later, received intrahippocampal suspension grafts containing cells from the mesencephalic raphe, cells from the medial septum and the diagonal band of Broca, or a mixture of both. Lesion-only and sham-operated rats were used as controls. All rats were tested for locomotor activity 1 week, 3 and 5 months after lesion surgery, for spatial working memory in a radial maze from 5 to 9 months, and for reference and working memory in a water tank during the 9th month after lesioning. Determination of hippocampal concentration of acetylcholine, noradrenaline, and serotonin was made after completion of behavioral testing. Compared to sham-operated rats, all rats with lesions, whether grafted or not, exhibited increased levels of locomotor activity and made more errors in the radial maze. The lesioned rats were also impaired in the probe trial (30 first seconds) of the water-tank test made according to a protocol requiring intact reference memory capabilities. While rats with septal or raphe grafts were also impaired, the rats with co-grafts showed performances not significantly different from those of sham-operated rats. With a protocol requiring intact working memory capabilities, all lesioned rats, whether grafted or not, were impaired in the water-tank test. In the dorsal hippocampus of lesion-only rats, the concentration of acetylcholine and serotonin was significantly reduced. In rats with septal grafts or co-grafts, the concentration of acetylcholine was close to normal, as was that of serotonin in rats with raphe grafts or co-grafts. These results confirm previous findings showing that co-grafts enabled the neurochemical properties of single grafts to be combined. Data from the water-tank test suggest that cholinergic and serotonergic hippocampal reinnervations by fetal cell grafts may induce partial recovery of spatial reference, but not working memory capabilities in rats.
Collapse
Affiliation(s)
- E Balse
- UMR 7521, CNRS/Université Louis Pasteur, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
13
|
Meneses A, Hong E. 5-HT1A receptors modulate the consolidation of learning in normal and cognitively impaired rats. Neurobiol Learn Mem 1999; 71:207-18. [PMID: 10082640 DOI: 10.1006/nlme.1998.3866] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Attempts were made to further analyze the role of 5-HT1A receptors in consolidation of learning by evaluating the role of these receptors in cognitively normal and impaired animals. The effects of post-training administration of 8-OH-DPAT and 5-HT1A receptor antagonists, WAY 100135, WAY 100635, and S-UH-301, plus the cholinergic and glutamatergic antagonists, scopolamine and dizolcipine, respectively, were determined using an autoshaping learning task. The results showed that 8-OH-DPAT increased the number of conditioned responses, whereas WAY100135, WAY100635, and S-UH-301, and the 5-HT depleter, p-chloroamphetamine (PCA), had no effect. PCA did not change the silent properties of the 5-HT1A receptor antagonists. PCA, WAY100635, and S-UH-301, but not GR127935 (a 5-HT1B/1D-receptor antagonist) or MDL100907 (a 5-HT2A receptor antagonist), reversed the effect to 8-OH-DPAT. Ketanserin (a 5-HT2A/2C receptor antagonist) and ondansetron (a 5-HT3 receptor antagonist), at a dose that increased the conditioned responses by itself, reversed the effect of 8-OH-DPAT. Moreover, 8-OH-DPAT or S-UH-301 reversed the learning deficit induced by scopolamine and dizocilpine whereas WAY100635 reversed the effect of scopolamine only. These data confirm a role for presynaptic 5-HT1A receptors during the consolidation of learning and support the hypothesis that serotonergic, cholinergic, and glutamatergic systems interact in cognitively impaired animals.
Collapse
Affiliation(s)
- A Meneses
- Terapéutica Experimental, Departamento de Farmacología y Toxicología, México, D.F., 14000, México
| | | |
Collapse
|
14
|
Rasmussen K, Kallman MJ, Helton DR. Serotonin-1A antagonists attenuate the effects of nicotine withdrawal on the auditory startle response. Synapse 1997; 27:145-52. [PMID: 9266775 DOI: 10.1002/(sici)1098-2396(199710)27:2<145::aid-syn5>3.0.co;2-e] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Withdrawal from the chronic administration of nicotine has previously been shown to lead to an enhanced auditory startle response in rats. In order to explore the neuropharmacology and neurophysiology underlying this phenomenon, we examined the effects of various 5-hydroxytryptamine (5-HT)-1A antagonists and agonists on the nicotine-withdrawal-enhanced auditory startle response in male rats. Animals were treated with nicotine (6 mg/kg/day nicotine base, via subcutaneously implanted osmotic minipumps) for 12 days. After 12 days the pumps were removed and the animals allowed to undergo spontaneous withdrawal for several days. In agreement with previous results, nicotine withdrawal led to a significant elevation of the auditory startle response. Pretreatment with the 5-HT-1A agonists (+)8-OH-DPAT (0.001-0.1 mg/kg) and LY274600 (0.3-3.0 mg/kg) either had no affect or exacerbated the nicotine-withdrawal-enhanced startle response. Pretreatment with the 5-HT-1A antagonists NAN-190 (1-3 mg/kg), LY206130 (1-10 mg/kg), or WAY-100635 (0.1-1.0 mg/kg) blocked the increase in the startle response caused by nicotine withdrawal at doses that had no effect on baseline startle responses. These data indicate that 5-HT-1A receptors play a role in the neurophysiology of nicotine withdrawal. In addition, 5-HT-1A antagonists may be able to relieve some nicotine withdrawal symptoms in man and may represent a novel pharmacotherapy for smoking cessation.
Collapse
Affiliation(s)
- K Rasmussen
- Neuroscience Research, Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana 46285, USA.
| | | | | |
Collapse
|
15
|
Meneses A, Hong E. Role of 5-HT1AReceptors in Acquisition, Consolidation and Retrieval of Learning. CNS DRUG REVIEWS 1997. [DOI: 10.1111/j.1527-3458.1997.tb00317.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Jäkälä P, Björklund M, Riekkinen P. Suppression of neocortical high-voltage spindles by nicotinic acetylcholine and 5-HT2 receptor stimulation. Eur J Pharmacol 1996; 299:47-60. [PMID: 8901007 DOI: 10.1016/0014-2999(95)00833-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To investigate the roles of the nicotinic acetylcholine receptor and the serotonin (5-hydroxytryptamine; 5-HT) subtype 2 receptor in the modulation of rat thalamocortical oscillations, the effects of systemic (s.c.) administration of nicotine, a nicotinic acetylcholine receptor agonist, and 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), a 5-HT2 receptor agonist, on neocortical high-voltage spindle activity occurring during quiet waking-immobility behavior in aged (28 months of age) and adult (7 months of age) rats were studied. Nicotine 0.1 and 0.3 mg/kg alleviated the age-related increase of neocortical high-voltage spindles, whereas in adult rats only nicotine 0.3 mg/kg was effective. DOI 0.3, 1.0 and 2.0 mg/kg suppressed high-voltage spindles in both aged and adult rats. In aged rats, a combination of subthreshold doses of nicotine (0.03 mg/kg) and DOI (0.1 mg/kg) decreased neocortical high-voltage spindles, whereas in adult rats two different subthreshold dose combinations (nicotine 0.03 or 0.1 mg/kg+DOI 0.1 mg/kg) had no effect. p-Chlorophenylalanine (400 mg/kg/day i.p. for 3 consecutive days) treatment decreased brain serotonin concentration (> 80% reduction), but did not affect high-voltage spindles. However, in both aged and adult rats, p-chlorophenylalanine treatment blocked the decrease in high-voltage spindle activity produced by DOI 0.3 mg/kg, though not the decrease produced by higher doses of DOI (1.0 and 2.0 mg/kg). It is important that, in adult rats, p-chlorophenylalanine treatment was able to abolish the decrease in high-voltage spindle activity seen after a relatively high dose of nicotine (0.3 mg/kg). The results suggest that nicotinic acetylcholine and 5-HT2 receptors may act in concert to suppress neocortical high-voltage spindling in rats, and that intact brain serotonergic systems may be important for some of the therapeutic effects of nicotine.
Collapse
Affiliation(s)
- P Jäkälä
- Department of Neurology, University of Kuopio, Finland
| | | | | |
Collapse
|
17
|
Brioni JD, Decker MW, Sullivan JP, Arneric SP. The pharmacology of (-)-nicotine and novel cholinergic channel modulators. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1996; 37:153-214. [PMID: 8891102 DOI: 10.1016/s1054-3589(08)60950-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Advances in the understanding of the molecular biology and pharmacology of nAChRs may provide targets for the development of novel and selective modulators of nAChRs in the brain. This contention is supported by the dissimilar behavioral effects observed following systemic administration of currently available nicotinic ligands. The concept of multiple subtypes of nAChRs is not unique, as evidenced by the pharmacology of other ligand-gated ion channels, such as GABA-A receptor, which also exist in multiple subtypes. At present, with respect to the nAChRs, relatively few of the subtypes identified have been cloned from human tissue and pharmacologically evaluated, but several groups are focusing their research efforts in this direction. With a thorough understanding of the pharmacological and functional characteristics of more of the putative human nAChR subtypes, this knowledge will facilitate the discovery of more efficacious and less toxic ChCMs that may provide potential novel therapeutic agents for a variety of CNS conditions.
Collapse
Affiliation(s)
- J D Brioni
- Abbott Laboratories, Abbott Park, Illinois 60064, USA
| | | | | | | |
Collapse
|
18
|
Riekkinen M, Sirviö J, Toivanen T, Riekkinen P. Combined treatment with a 5HT1A receptor agonist and a muscarinic acetylcholine receptor antagonist disrupts water maze navigation behavior. Psychopharmacology (Berl) 1995; 122:137-46. [PMID: 8848529 DOI: 10.1007/bf02246088] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present study was designed to investigate the effects of combined treatment with a serotonin (5-HT)1A receptor agonist, 8-hydroxy-2-(dipropylamino)-tetralin (8-OH-DPAT), and a muscarinic acetylcholine receptor antagonist, scopolamine, on water maze (WM) navigation. Treatment with either 8-OH-DPAT or scopolamine before daily behavioral training disrupted spatial navigation at medium doses and cue navigation at high doses. Pretraining treatment with a combination of subthreshold doses of 8-OH-DPAT and scopolamine impaired WM spatial and cue navigation, but did not impair the WM performance if the drugs were injected post-training. In trained rats, combined injections of subthreshold doses of 8-OH-DPAT and scopolamine given pretraining did not impair the rats' ability to find the platform in a familiar or in a novel position. The combination of 8-OH-DPAT and scopolamine also disrupted WM navigation in rats with central 5-HT depletion. A combination of a peripheral muscarinic acetylcholine receptor antagonist and 8-OH-DPAT had no effect on WM navigation. These data suggest that combined treatment with drugs blocking muscarinic acetylcholine receptors and activating 5-HT1A receptors greatly impairs WM learning/performance, but does not impair spatial memory per se.
Collapse
Affiliation(s)
- M Riekkinen
- Department of Neurology, University of Kuopio, Finland
| | | | | | | |
Collapse
|
19
|
Cassel JC, Jeltsch H. Serotonergic modulation of cholinergic function in the central nervous system: cognitive implications. Neuroscience 1995; 69:1-41. [PMID: 8637608 DOI: 10.1016/0306-4522(95)00241-a] [Citation(s) in RCA: 199] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Accumulating evidence suggests that serotonin may modulate cholinergic function in several regions of the mammalian brain and that these serotonergic/cholinergic interactions influence cognition. The first part of this review is an overview of histological, electrophysiological and pharmacological (in vitro, in vivo) data indicating that, in several brain regions (e.g., hippocampus, cortex and striatum), there are neuroanatomical substrates for a serotonergic/cholinergic interaction, and that alterations in serotonergic activity may induce functional changes in cholinergic neurons. In the second part, the review focuses on experimental approaches showing or suggesting that central cholinergic and serotonergic mechanisms are cooperating in the regulation of cognitive functions. These arguments are based on lesion, intracerebral grafting and pharmacological techniques. It is concluded that not all mnesic perturbations induced by concurrent manipulations of the serotonergic and cholinergic systems can be attributed to a serotonergic modification of the cholinergic system. The cognitive faculties of an organism arise from interactions among several neurotransmitter systems within brain structures such as, for instance, the hippocampus or the cortex, but also from influences on memory of other general functions that may involve cerebral substrates different from those classically related to mnesic functions (e.g., attention, arousal, sensory accuracy, etc.).
Collapse
Affiliation(s)
- J C Cassel
- Université Louis Pasteur, URA 1939 du CNRS, Strasbourg, France
| | | |
Collapse
|
20
|
Steckler T, Sahgal A. The role of serotonergic-cholinergic interactions in the mediation of cognitive behaviour. Behav Brain Res 1995; 67:165-99. [PMID: 7779290 DOI: 10.1016/0166-4328(94)00157-b] [Citation(s) in RCA: 204] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cholinergic systems have been linked to cognitive processes such as attention, learning and mnemonic function. However, other neurotransmitter systems, such as the serotonergic one, which may have only minor effects on cognitive function on their own, interact with cholinergic function and their combined effects may have marked behavioural actions. Some studies have dealt with serotonergic-cholinergic interactions, but it is unclear whether both systems affect cognition directly or whether interactions at a behavioural level result from additional alterations in non-cognitive factors. This distinction is difficult, since it is possible that the diverse cholinergic and serotonergic systems serve different roles in the mediation of cognitive processes, both at the neuroanatomical and neurochemical level. Nevertheless, it is possible that cholinergic systems primarily alter accuracy in cognitive tasks, whereas serotonergic neurotransmission modulates behaviour by altering bias (motivation, motor processes). Whether serotonin alters accuracy or bias, however, may also depend on the cognitive process under investigation: it is suggested that attention, stimulus processing and/or arousal can be influenced by both cholinergic and serotonergic systems independently from each other. Cholinergic and serotonergic projections to cortex and thalamus may be of importance in the mediation of these cognitive processes. Serotonergic-cholinergic interactions could also be of importance in the mediation of learning processes and trial-by-trial working memory. The data available do not allow an unambiguous conclusion about the role of these interactive processes in the mediation of long-term reference memory. These processes may rely on serotonergic-cholinergic interactions at the hippocampal level. It is concluded that serotonergic-cholinergic interactions play an important role in the mediation of behavioural, including cognitive, performance, but that further studies are necessary in order to elucidate the exact nature of these interactions.
Collapse
Affiliation(s)
- T Steckler
- MRC Neurochemical Pathology Unit, Newcastle General Hospital, Newcastle-upon-Tyne, UK
| | | |
Collapse
|