Christensen JD, Kaufman MJ, Frederick B, Rose SL, Moore CM, Lukas SE, Mendelson JH, Cohen BM, Renshaw PF. Proton magnetic resonance spectroscopy of human basal ganglia: response to cocaine administration.
Biol Psychiatry 2000;
48:685-92. [PMID:
11032980 DOI:
10.1016/s0006-3223(00)00897-0]
[Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND
Proton magnetic resonance spectroscopy was used to determine the effects of intravenous cocaine or placebo administration on human basal ganglia water and metabolite resonances.
METHODS
Long echo time, proton magnetic resonance spectra of water and intracellular metabolites were continuously acquired from an 8-cm(3) voxel centered on the left caudate and putamen nuclei before, during, and after the intravenous administration of cocaine or a placebo in a double-blind manner.
RESULTS
Cocaine, at both 0.2 and 0.4 mg/kg, did not alter the peak area for water. Cocaine at 0.2 mg/kg induced small and reversible increases in choline-containing compounds and N-acetylaspartate peak areas. Cocaine at 0.4 mg/kg induced larger and more sustained increases in choline-containing compounds and N-acetylaspartate peak areas. No changes in either water or metabolite resonances were noted following placebo administration.
CONCLUSIONS
These increases in choline-containing compounds and N-acetylaspartate peak areas may reflect increases in metabolite T2 relaxation times secondary to osmotic stress and/or increased phospholipid signaling within the basal ganglia following cocaine administration. This is the first report of acute, drug-induced changes in the intensity of human brain proton magnetic resonance spectroscopy resonance areas.
Collapse