1
|
Sathitnaitham S, Suttangkakul A, Wonnapinij P, McQueen-Mason SJ, Vuttipongchaikij S. Gel-permeation chromatography-enzyme-linked immunosorbent assay method for systematic mass distribution profiling of plant cell wall matrix polysaccharides. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1776-1790. [PMID: 33788319 DOI: 10.1111/tpj.15255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Cell walls are dynamic and multi-component materials that play important roles in many areas of plant biology. The composition and interactions of the structural elements give rise to material properties, which are modulated by the activity of wall-related enzymes. Studies of the genes and enzymes that determine wall composition and function have made great progress, but rarely take account of potential compensatory changes in wall polymers that may accompany and accommodate changes in other components, particularly for specific polysaccharides. Here, we present a method that allows the simultaneous examination of the mass distributions and quantities of specific cell wall matrix components, allowing insight into direct and indirect consequences of cell wall manipulations. The method employs gel-permeation chromatography fractionation of cell wall polymers followed by enzyme-linked immunosorbent assay to identify polymer types. We demonstrate the potential of this method using glycan-directed monoclonal antibodies to detect epitopes representing xyloglucans, heteromannans, glucuronoxylans, homogalacturonans (HGs) and methyl-esterified HGs. The method was used to explore compositional diversity in different Arabidopsis organs and to examine the impacts of changing wall composition in a number of previously characterized cell wall mutants. As demonstrated in this article, this methodology allows a much deeper understanding of wall composition, its dynamism and plasticity to be obtained, furthering our knowledge of cell wall biology.
Collapse
Affiliation(s)
- Sukhita Sathitnaitham
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand
| | - Anongpat Suttangkakul
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand
- Center of Advanced Studies for Tropical Natural Resources, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand
| | - Passorn Wonnapinij
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand
- Center of Advanced Studies for Tropical Natural Resources, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand
| | | | - Supachai Vuttipongchaikij
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand
- Center of Advanced Studies for Tropical Natural Resources, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| |
Collapse
|
2
|
Thornton CR. Detection of the 'Big Five' mold killers of humans: Aspergillus, Fusarium, Lomentospora, Scedosporium and Mucormycetes. ADVANCES IN APPLIED MICROBIOLOGY 2019; 110:1-61. [PMID: 32386603 DOI: 10.1016/bs.aambs.2019.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fungi are an important but frequently overlooked cause of morbidity and mortality in humans. Life-threatening fungal infections mainly occur in immunocompromised patients, and are typically caused by environmental opportunists that take advantage of a weakened immune system. The filamentous fungus Aspergillus fumigatus is the most important and well-documented mold pathogen of humans, causing a number of complex respiratory diseases, including invasive pulmonary aspergillosis, an often fatal disease in patients with acute leukemia or in immunosuppressed bone marrow or solid organ transplant recipients. However, non-Aspergillus molds are increasingly reported as agents of disseminated diseases, with Fusarium, Scedosporium, Lomentospora and mucormycete species now firmly established as pathogens of immunosuppressed and immunocompetent individuals. Despite well-documented risk factors for invasive fungal diseases, and increased awareness of the risk factors for life-threatening infections, the number of deaths attributable to molds is likely to be severely underestimated driven, to a large extent, by the lack of readily accessible, cheap, and accurate tests that allow detection and differentiation of infecting species. Early diagnosis is critical to patient survival but, unlike Aspergillus diseases, where a number of CE-marked or FDA-approved biomarker tests are now available for clinical diagnosis, similar tests for fusariosis, scedosporiosis and mucormycosis remain experimental, with detection reliant on insensitive and slow culture of pathogens from invasive bronchoalveolar lavage fluid, tissue biopsy, or from blood. This review examines the ecology, epidemiology, and contemporary methods of detection of these mold pathogens, and the obstacles to diagnostic test development and translation of novel biomarkers to the clinical setting.
Collapse
|
3
|
Lecointe K, Cornu M, Leroy J, Coulon P, Sendid B. Polysaccharides Cell Wall Architecture of Mucorales. Front Microbiol 2019; 10:469. [PMID: 30941108 PMCID: PMC6433966 DOI: 10.3389/fmicb.2019.00469] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/22/2019] [Indexed: 11/18/2022] Open
Abstract
Invasive fungal infections are some of the most life-threatening infectious diseases in the hospital setting. In industrialized countries, the most common fungal species isolated from immunocompromised patients are Candida and Aspergillus spp. However, the number of infections due to Mucorales spp. is constantly increasing and little is known about the virulence factors of these fungi. The fungal cell wall is an important structure protecting fungi from the environment. A better knowledge of its composition should improve our understanding of host-pathogen interactions. Cell wall molecules are involved in tissue adherence, immune escape strategies, and stimulation of host defenses including phagocytosis and mediators of humoral immunity. The fungal cell wall is also a target of choice for the development of diagnostic or therapeutic tools. The present review discusses our current knowledge on the cell wall structure of Mucorales in terms of the polysaccharides and glyco-enzymes involved in its biosynthesis and degradation, with an emphasis on the missing gaps in our knowledge.
Collapse
Affiliation(s)
- Karine Lecointe
- Lille Inflammation Research International Center, UMR 995 Inserm, Fungal Associated Invasive and Inflammatory Diseases, CHU Lille, Lille University, Lille, France.,Laboratory of Parasitology and Mycology, Institute of Microbiology, CHU Lille, Lille, France
| | - Marjorie Cornu
- Lille Inflammation Research International Center, UMR 995 Inserm, Fungal Associated Invasive and Inflammatory Diseases, CHU Lille, Lille University, Lille, France.,Laboratory of Parasitology and Mycology, Institute of Microbiology, CHU Lille, Lille, France
| | - Jordan Leroy
- Lille Inflammation Research International Center, UMR 995 Inserm, Fungal Associated Invasive and Inflammatory Diseases, CHU Lille, Lille University, Lille, France.,Laboratory of Parasitology and Mycology, Institute of Microbiology, CHU Lille, Lille, France
| | - Pauline Coulon
- Lille Inflammation Research International Center, UMR 995 Inserm, Fungal Associated Invasive and Inflammatory Diseases, CHU Lille, Lille University, Lille, France.,Laboratory of Parasitology and Mycology, Institute of Microbiology, CHU Lille, Lille, France
| | - Boualem Sendid
- Lille Inflammation Research International Center, UMR 995 Inserm, Fungal Associated Invasive and Inflammatory Diseases, CHU Lille, Lille University, Lille, France.,Laboratory of Parasitology and Mycology, Institute of Microbiology, CHU Lille, Lille, France
| |
Collapse
|
4
|
He Y, Hou W, Thompson M, Holovics H, Hobson T, Jones MT. Size exclusion chromatography of polysaccharides with reverse phase liquid chromatography. J Chromatogr A 2014; 1323:97-103. [DOI: 10.1016/j.chroma.2013.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 11/16/2022]
|
5
|
Water soluble exo-polysaccharide from Syncephalastrum racemosum, a strong inducer of plant defence reactions. Carbohydr Polym 2013; 101:941-6. [PMID: 24299859 DOI: 10.1016/j.carbpol.2013.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 10/01/2013] [Accepted: 10/07/2013] [Indexed: 11/23/2022]
Abstract
This study examines the production, characterization and bioactivity on plant cell cultured in vitro of exopolysaccharides (EPS) from Syncephalastrum racemosum CBS 443.59. Firstly, the influence of the fungus culture condition in shake flasks (pH, temperature and different carbon and nitrogen sources) on EPS and biomass production was evaluated. In order to enhance EPS production, a new protocol based on two-stage pH fermentation in a 3 L stirred fermentor was developed. Under this condition, EPS production increased by 3.55 times, compared to a constant pH process, reaching a maximal EPS concentration of 2.62 g/L. Structurally, the EPS contains a polyglucuronic acid backbone, linked essentially with mannose and fucose units and some galactose and glucose units. The bioactivity of EPS as inducer of defence reactions in plant suspension-cultured cells was also studied. Our results show, for first time, that EPS from S. racemosum CBS 443.59 induces, depending on the concentration, PAL activation and H2O2 synthesis in Arabidopsis thaliana cell suspensions.
Collapse
|
6
|
Thornton CR, Wills OE. Immunodetection of fungal and oomycete pathogens: established and emerging threats to human health, animal welfare and global food security. Crit Rev Microbiol 2013; 41:27-51. [PMID: 23734714 DOI: 10.3109/1040841x.2013.788995] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Filamentous fungi (moulds), yeast-like fungi, and oomycetes cause life-threatening infections of humans and animals and are a major constraint to global food security, constituting a significant economic burden to both agriculture and medicine. As well as causing localized or systemic infections, certain species are potent producers of allergens and toxins that exacerbate respiratory diseases or cause cancer and organ damage. We review the pathogenic and toxigenic organisms that are etiologic agents of both animal and plant diseases or that have recently emerged as serious pathogens of immunocompromised individuals. The use of hybridoma and phage display technologies and their success in generating monoclonal antibodies for the detection and control of fungal and oomycete pathogens are explored. Monoclonal antibodies hold enormous potential for the development of rapid and specific tests for the diagnosis of human mycoses, however, unlike plant pathology, their use in medical mycology remains to be fully exploited.
Collapse
|
7
|
Verhoef R, Lu Y, Knox JP, Voragen AG, Schols HA. Fingerprinting complex pectins by chromatographic separation combined with ELISA detection. Carbohydr Res 2009; 344:1808-17. [DOI: 10.1016/j.carres.2008.09.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/13/2008] [Accepted: 09/24/2008] [Indexed: 10/21/2022]
|
8
|
|
9
|
Zalyalieva SV, Kabulov BD, Akhundzhanov KA, Rashidova SS. Liquid chromatography of polysaccharides. Chem Nat Compd 1999. [DOI: 10.1007/bf02238201] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Churms SC. Recent progress in carbohydrate separation by high-performance liquid chromatography based on size exclusion. J Chromatogr A 1996. [DOI: 10.1016/0021-9673(95)00305-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
2-O-methyl-D-mannose residues are immunodominant in extracellular polysaccharides of Mucor racemosus and related molds. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41778-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Application of reductive cleavage in the structural investigation of the antigenic polysaccharides of Aspergillus fumigatus and Penicillium digitatum with respect to the determination of the ring size of the galactose moieties. Carbohydr Polym 1994. [DOI: 10.1016/0144-8617(94)90084-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Approaches to the classification of the Mortierella isabellina group: antigenic extracellular polysaccharides. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0953-7562(09)80149-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
|
15
|
De Ruiter GA, Smid P, Schols HA, Van Boom JH, Rombouts FM. Detection of fungal carbohydrate antigens by high-performance immunoaffinity chromatography using a protein A column with covalently linked immunoglobulin G. JOURNAL OF CHROMATOGRAPHY 1992; 584:69-75. [PMID: 1487517 DOI: 10.1016/0378-4347(92)80010-n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fungal carbohydrate antigens were analysed by high-performance immunoaffinity chromatography (HPIAC) with immunoglobulin G (IgG) antibodies raised against extracellular polysaccharides of Mucor racemosus. The protein A-IgG complex was covalently bound with dimethyl pimelimidate, which enabled the use of strong acidic buffers to release the tightly bound antigens from the column. Prior to pulsed-amperometric detection, an anion-micromembrane suppressor was used to raise the pH of the effluent to above 12 without dilution. The HPIAC system provides a sophisticated method for the rapid and sensitive detection of antigenic oligomeric carbohydrates in biological samples and is proposed as an alternative to quantitative enzyme-linked immunosorbent assay techniques.
Collapse
Affiliation(s)
- G A De Ruiter
- Department of Food Science, Wageningen Agricultural University, Netherlands
| | | | | | | | | |
Collapse
|
16
|
De Ruiter GA, Schols HA, Voragen AG, Rombouts FM. Carbohydrate analysis of water-soluble uronic acid-containing polysaccharides with high-performance anion-exchange chromatography using methanolysis combined with TFA hydrolysis is superior to four other methods. Anal Biochem 1992; 207:176-85. [PMID: 1489092 DOI: 10.1016/0003-2697(92)90520-h] [Citation(s) in RCA: 229] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sulfuric acid hydrolysis according to the Saeman procedure, TFA hydrolysis, and methanolysis combined with TFA hydrolysis were compared for the hydrolysis of water-soluble uronic acid-containing polysaccharides originating from fungi, plants, and animals. The constituent sugar residues released were subsequently analyzed by either conventional GLC analysis of alditol acetates or high-performance anion-exchange chromatography with pulsed-amperometric detection. It was shown that TFA hydrolysis alone is not sufficient for complete hydrolysis. Sulfuric acid hydrolysis of these polysaccharides resulted in low recoveries of 6-deoxy-sugar residues. Best results were obtained by methanolysis combined with TFA hydrolysis. Methanolysis with 2 M HCl prior to TFA hydrolysis resulted in complete liberation of monosaccharides from pectic material and from most fungal and animal polysaccharides tested. Any incomplete hydrolysis could be assessed easily by HPAEC, by the detection of characteristic oligomeric products, which is difficult using alternative methods currently in use. Methanolysis followed by TFA hydrolysis of 20 micrograms water-soluble uronic acid containing polysaccharides and subsequent analysis of the liberated sugar residues by HPAEC allowed us to determine the carbohydrate composition of these polysaccharides rapidly and accurately in one assay without the need for derivatization.
Collapse
Affiliation(s)
- G A De Ruiter
- Wageningen Agricultural University, Department of Food Science, The Netherlands
| | | | | | | |
Collapse
|
17
|
Van Bruggen-Van Der Lugt AW, Kamphuis HJ, De Ruiter GA, Mischnick P, Van Boom JH, Rombouts FM. New structural features of the antigenic extracellular polysaccharides of Penicillium and Aspergillus species revealed with exo-beta-D-galactofuranosidase. J Bacteriol 1992; 174:6096-102. [PMID: 1383191 PMCID: PMC207675 DOI: 10.1128/jb.174.19.6096-6102.1992] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To study the structures of the epitopes of the extracellular polysaccharides from Penicillium and Aspergillus species, an exo-beta-D-galactofuranosidase was purified from a commercial crude enzyme preparation from Trichoderma harzianum. Analysis of ring size and linkage position of the galactose residues of the extracellular polysaccharide of Penicillium digitatum, before and after enzymatic treatment, was determined by the reductive-cleavage technique. In addition to terminal and beta (1-5)-linked galactofuranosides, beta (1-6)-linked and beta (1,5,6)-linked branched galactofuranose residues could be identified. After degradation with the purified exo-beta-D-galactofuranosidase, all initial linkages of the galactofuranose residues were still present, but the amount of beta (1-5)-linked galactofuranose residues had decreased considerably. Treatment of the extracellular polysaccharides of Penicillium and Aspergillus species with the purified exo-beta-D-galactofuranosidase resulted in complete disappearance of the enzyme-linked immunosorbent assay reactivity of these polysaccharides, using immunoglobulin G antibodies raised against P. digitatum. Therefore, with the use of this enzyme, it was proved that the beta (1-5)-linked galactofuranosyl residues only are responsible for the antigenicity of the extracellular polysaccharides of Penicillium and Aspergillus molds. A new structural model for the antigenic galactofuranose side chains of the galactomannan from P. digitatum is proposed.
Collapse
|
18
|
De Ruiter GA, Van Bruggen-van der Lugt AW, Nout MJ, Middelhoven WJ, Soentoro PS, Notermans SH, Rombouts FM. Formation of antigenic extracellular polysaccharides by selected strains of Mucor spp., Rhizopus spp., Rhizomucor spp., Absidia corymbifera and Syncephalastrum racemosum. Antonie Van Leeuwenhoek 1992; 62:189-99. [PMID: 1416915 DOI: 10.1007/bf00582579] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, polyclonal IgG antibodies raised against extracellular polysaccharides (EPS) of Mucor racemosus were characterised as almost specific for moulds belonging to the order of Mucorales. Cross-reactivity in the ELISA could be observed only towards the yeast Pichia membranaefaciens. EPS were isolated from various cultures of M. hiemalis growing on six different carbon sources and two nitrogen sources, with ratios varying from 0.13 to 0.44 relative to the amount of biomass. Other strains including Mucor spp., Rhizopus spp., Rhizomucor spp., Absidia corymbifera and Syncephalastrum racemosum also excreted EPS, with ratios varying from 0.05 to 0.23. In all cases, the excreted EPS had similar antigenic properties as determined by ELISA. No enzymatic degradation of the antigenic parts of the polysaccharides could be observed upon prolonged incubation. Considering that all tested strains formed similar amounts of antigenic EPS there might be scope for the specific detection of biomass of Mucoralean moulds using ELISA techniques for example in food.
Collapse
Affiliation(s)
- G A De Ruiter
- Wageningen Agricultural University, Department of Food Science, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
19
|
De Ruiter GA, Josso SL, Colquhoun IJ, Voragen AG, Rombouts FM. Isolation and characterization of β(1–4)-d-glucuronans from extracellular polysaccharides of moulds belonging to Mucorales. Carbohydr Polym 1992. [DOI: 10.1016/0144-8617(92)90181-o] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|